实战 | OpenCV实现多角度模板匹配(详细步骤 + 代码)

2022-05-26 14:43:31 浏览数 (1)

视觉/图像重磅干货,第一时间送达!

导读

本文将介绍使用OpenCV实现多角度模板匹配的详细步骤 代码。(来源公众号:OpenCV与AI深度学习)

背景介绍

熟悉OpenCV的朋友肯定都知道OpenCV自带的模板匹配matchTemplate方法是不支持旋转的,也就是说当目标和模板有角度差异时匹配常常会失败,可能目标只是轻微的旋转,匹配分数就会下降很多,导致匹配精度下降甚至匹配出错。另一个方法是matchShape(形状匹配),匹配时需要轮廓分明才容易匹配成功,但无法的到匹配角度,也不方便使用。本文介绍基于matchTemplate 旋转 金字塔下采样实现多角度的模板匹配,返回匹配结果(斜矩形、角度、方向)。

实现效果

如上面视频所示,本方法可以对不同角度的元件做匹配并标注元件方向。

实现思路

【1】如何适应目标的角度变化?我们可以将模板旋转,从0~360°依次匹配找到最佳的匹配位置;

【2】如何提高匹配速度?使用金字塔下采样,将模板和待匹配图均缩小后匹配;加大匹配搜寻角度的步长,比如从每1°匹配一次改为每5°匹配一次等。

实现步骤:

【1】旋转模板图像。旋转图像本身比较简单,下面是代码:

代码语言:javascript复制
//旋转图像
Mat ImageRotate(Mat image, double angle)
{
  Mat newImg;
  Point2f pt = Point2f((float)image.cols / 2, (float)image.rows / 2);
  Mat M = getRotationMatrix2D(pt, angle, 1.0);
  warpAffine(image, newImg, M, image.size());
  return newImg;
}

但需要注意,很多时候按照上面方法旋转时,会丢失模板信息产生黑边,这里提供两种方法供大家参考尝试:

① 旋转时放大目标图像尺寸,保证模板图像上信息不丢失,然后模板匹配时使用mask,如何使用mask掩码有什么用?看下面链接文章介绍:

实战 | OpenCV带掩码(mask)的模板匹配使用技巧与演示(附源码)

② 旋转时不放大目标图像尺寸,剔除黑边剩余部分做mask来匹配。

【2】图像金字塔下采样。什么是图像金字塔?什么是上下采样?直接百度。

下采样的目的前面已介绍,减小图像分辨率提高图像匹配速度,代码如下:

代码语言:javascript复制
//对模板图像和待检测图像分别进行图像金字塔下采样
for (int i = 0; i < numLevels; i  )
{
  pyrDown(src, src, Size(src.cols / 2, src.rows / 2));
  pyrDown(model, model, Size(model.cols / 2, model.rows / 2));
}

【3】0~360°各角度匹配。旋转模板图像,依次调用matchTemplate在目标图中匹配,记录最佳匹配分数,以及对应的角度。

模板匹配详细使用说明:

https://docs.opencv.org/4.x/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be

旋转匹配代码:

代码语言:javascript复制
TemplateMatchModes matchMode = TM_CCOEFF_NORMED;
  switch (nccMethod)
  {
  case 0:
    matchMode = TM_SQDIFF;
    break;
  case 1:
    matchMode = TM_SQDIFF_NORMED;
    break;
  case 2:
    matchMode = TM_CCORR;
    break;
  case 3:
    matchMode = TM_CCORR_NORMED;
    break;
  case 4:
    matchMode = TM_CCOEFF;
    break;
  case 5:
    matchMode = TM_CCOEFF_NORMED;
    break;
  }

  //在没有旋转的情况下进行第一次匹配
  double minVal, maxVal;
  Point minLoc, maxLoc;
  matchTemplate(src, model, result, matchMode);
  minMaxLoc(result,  &minVal, &maxVal, &minLoc, &maxLoc);

  Point location = maxLoc;
  double temp = maxVal;
  double angle = 0;

  Mat newImg;

  //以最佳匹配点左右十倍角度步长进行循环匹配,直到角度步长小于参数角度步长
  if (nccMethod == 0 || nccMethod == 1)
  {
    do
    {
      for (int i = 0; i <= (int)range / step; i  )
      {
        newImg = ImageRotate(model, start   step * i);
        
        matchTemplate(src, newImg, result, matchMode);
        double minval, maxval;
        Point minloc, maxloc;
        minMaxLoc(result, &minval, &maxval, &minloc, &maxloc);
        if (maxval < temp)
        {
          location = maxloc;
          temp = maxval;
          angle = start   step * i;
        }
      }
      range = step * 2;
      start = angle - step;
      step = step / 10;
    } while (step > angleStep);
    return ResultPoint(location.x * pow(2, numLevels)   modelImage.cols / 2, location.y * pow(2, numLevels)   modelImage.rows / 2, -angle, temp);
  }
  else
  {
    do
    {
      for (int i = 0; i <= (int)range / step; i  )
      {
        newImg = ImageRotate(model, start   step * i);
        imshow("rotate", newImg);
        imshow("src-pyrDown", src);
        waitKey();
        matchTemplate(src, newImg, result, matchMode);
        double minval, maxval;
        Point minloc, maxloc;
        minMaxLoc(result, &minval, &maxval, &minloc, &maxloc);
        if (maxval > temp)
        {
          location = maxloc;
          temp = maxval;
          angle = start   step * i;
        }
      }
      range = step * 2;
      start = angle - step;
      step = step / 10;
    } while (step > angleStep);
    if (temp > thresScore)
    {
      return ResultPoint(location.x * pow(2, numLevels), location.y * pow(2, numLevels), -angle, temp);
    }
  }
  return ResultPoint(-1, -1, 0, 0);

【4】标注匹配结果。根据模板图大小、匹配结果角度计算出匹配后的矩形四个角点,根据角点关系即可绘制方向:

代码语言:javascript复制
//获取旋转后矩形对应的端点坐标
vector<Point> GetRotatePoints(Mat img, Rect inRect, double angle)
{
  Rect rect = inRect;
  vector<Point>pts;
  Point2f center = Point2f(img.cols / 2, img.rows / 2);
  Mat M = getRotationMatrix2D(center, angle, 1.0);
  //cout << M << endl;

  Mat ptMat = Mat::ones(3, 4, CV_32FC1);
  ptMat.at<float>(0, 0) = 0;
  ptMat.at<float>(0, 1) = (float)rect.width - 1;
  ptMat.at<float>(0, 2) = (float)rect.width - 1;
  ptMat.at<float>(0, 3) = 0;
  ptMat.at<float>(1, 0) = 0;
  ptMat.at<float>(1, 1) = 0;
  ptMat.at<float>(1, 2) = (float)rect.height - 1;
  ptMat.at<float>(1, 3) = (float)rect.height - 1;

  M.convertTo(M, CV_32F);

  Mat result = M * ptMat;
  //cout << result << endl;
  pts.push_back(Point((int)result.at<float>(0, 0), (int)result.at<float>(1, 0)));
  pts.push_back(Point((int)result.at<float>(0, 1), (int)result.at<float>(1, 1)));
  pts.push_back(Point((int)result.at<float>(0, 2), (int)result.at<float>(1, 2)));
  pts.push_back(Point((int)result.at<float>(0, 3), (int)result.at<float>(1, 3)));
  return pts;
}

【5】举例演示。模板图从下图中截取并保存template.png:

测试图像12张,来自Halcon例程图片,路径如下:

C:UsersPublicDocumentsMVTecHALCON-20.11-Steadyexamplesimagesmodules

匹配结果:

后记

可以添加匹配分数阈值和NMS实现多目标匹配,后续还会介绍其他匹配方法的实现,敬请期待。

完整C /C#实现源码与素材可在下方知识星球中获取。

下载1:Pytoch常用函数手册

在「OpenCV与AI深度学习」公众号后台回复:Pytorch常用函数手册,即可下载全网第一份Pytorch常用函数手册,涵盖Tensors介绍、基础函数介绍、数据处理函数、优化函数、CUDA编程、多线程处理等十四章章内容。

下载2:145个OpenCV实例应用代码

—THE END—

0 人点赞