使用协同过滤来构建电影推荐系统。

2022-05-28 15:18:00 浏览数 (1)

代码语言:javascript复制
%% Machine Learning Online Class
%  Exercise 8 | Anomaly Detection and Collaborative Filtering
%
%  Instructions
%  ------------
%
%  This file contains code that helps you get started on the
%  exercise. You will need to complete the following functions:
%
%     estimateGaussian.m
%     selectThreshold.m
%     cofiCostFunc.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%

%% Initialization
clear ; close all; clc

%% ================== Part 1: Load Example Dataset  ===================
%  We start this exercise by using a small dataset that is easy to
%  visualize.
%
%  Our example case consists of 2 network server statistics across
%  several machines: the latency and throughput of each machine.
%  This exercise will help us find possibly faulty (or very fast) machines.
%

fprintf('Visualizing example dataset for outlier detection.nn');

%  The following command loads the dataset. You should now have the
%  variables X, Xval, yval in your environment
load('ex8data1.mat');

%  Visualize the example dataset
plot(X(:, 1), X(:, 2), 'bx');
axis([0 30 0 30]);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');

fprintf('Program paused. Press enter to continue.n');
pause


%% ================== Part 2: Estimate the dataset statistics ===================
%  For this exercise, we assume a Gaussian distribution for the dataset.
%
%  We first estimate the parameters of our assumed Gaussian distribution, 
%  then compute the probabilities for each of the points and then visualize 
%  both the overall distribution and where each of the points falls in 
%  terms of that distribution.
%
fprintf('Visualizing Gaussian fit.nn');

%  Estimate my and sigma2
[mu sigma2] = estimateGaussian(X);

%  Returns the density of the multivariate normal at each data point (row) 
%  of X
p = multivariateGaussian(X, mu, sigma2);

%  Visualize the fit
visualizeFit(X,  mu, sigma2);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');

fprintf('Program paused. Press enter to continue.n');
pause;

%% ================== Part 3: Find Outliers ===================
%  Now you will find a good epsilon threshold using a cross-validation set
%  probabilities given the estimated Gaussian distribution
% 

pval = multivariateGaussian(Xval, mu, sigma2);

[epsilon F1] = selectThreshold(yval, pval);
fprintf('Best epsilon found using cross-validation: %en', epsilon);
fprintf('Best F1 on Cross Validation Set:  %fn', F1);
fprintf('   (you should see a value epsilon of about 8.99e-05)n');
fprintf('   (you should see a Best F1 value of  0.875000)nn');

%  Find the outliers in the training set and plot the
outliers = find(p < epsilon);

%  Draw a red circle around those outliers
hold on
plot(X(outliers, 1), X(outliers, 2), 'ro', 'LineWidth', 2, 'MarkerSize', 10);
hold off

fprintf('Program paused. Press enter to continue.n');
pause;

%% ================== Part 4: Multidimensional Outliers ===================
%  We will now use the code from the previous part and apply it to a 
%  harder problem in which more features describe each datapoint and only 
%  some features indicate whether a point is an outlier.
%

%  Loads the second dataset. You should now have the
%  variables X, Xval, yval in your environment
load('ex8data2.mat');

%  Apply the same steps to the larger dataset
[mu sigma2] = estimateGaussian(X);

%  Training set 
p = multivariateGaussian(X, mu, sigma2);

%  Cross-validation set
pval = multivariateGaussian(Xval, mu, sigma2);

%  Find the best threshold
[epsilon F1] = selectThreshold(yval, pval);

fprintf('Best epsilon found using cross-validation: %en', epsilon);
fprintf('Best F1 on Cross Validation Set:  %fn', F1);
fprintf('   (you should see a value epsilon of about 1.38e-18)n');
fprintf('   (you should see a Best F1 value of 0.615385)n');
fprintf('# Outliers found: %dnn', sum(p < epsilon));

ex8_cofi.m

代码语言:javascript复制
%% Machine Learning Online Class
%  Exercise 8 | Anomaly Detection and Collaborative Filtering
%
%  Instructions
%  ------------
%
%  This file contains code that helps you get started on the
%  exercise. You will need to complete the following functions:
%
%     estimateGaussian.m
%     selectThreshold.m
%     cofiCostFunc.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%

%% =============== Part 1: Loading movie ratings dataset ================
%  You will start by loading the movie ratings dataset to understand the
%  structure of the data.
%  
fprintf('Loading movie ratings dataset.nn');

%  Load data
load ('ex8_movies.mat');

%  Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies on 
%  943 users
%
%  R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
%  rating to movie i

%  From the matrix, we can compute statistics like average rating.
fprintf('Average rating for movie 1 (Toy Story): %f / 5nn', ...
        mean(Y(1, R(1, :))));

%  We can "visualize" the ratings matrix by plotting it with imagesc
imagesc(Y);
ylabel('Movies');
xlabel('Users');

fprintf('nProgram paused. Press enter to continue.n');
pause;

%% ============ Part 2: Collaborative Filtering Cost Function ===========
%  You will now implement the cost function for collaborative filtering.
%  To help you debug your cost function, we have included set of weights
%  that we trained on that. Specifically, you should complete the code in 
%  cofiCostFunc.m to return J.

%  Load pre-trained weights (X, Theta, num_users, num_movies, num_features)
load ('ex8_movieParams.mat');

%  Reduce the data set size so that this runs faster
num_users = 4; num_movies = 5; num_features = 3;
X = X(1:num_movies, 1:num_features);
Theta = Theta(1:num_users, 1:num_features);
Y = Y(1:num_movies, 1:num_users);
R = R(1:num_movies, 1:num_users);

%  Evaluate cost function
J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
               num_features, 0);
           
fprintf(['Cost at loaded parameters: %f '...
         'n(this value should be about 22.22)n'], J);

fprintf('nProgram paused. Press enter to continue.n');
pause;


%% ============== Part 3: Collaborative Filtering Gradient ==============
%  Once your cost function matches up with ours, you should now implement 
%  the collaborative filtering gradient function. Specifically, you should 
%  complete the code in cofiCostFunc.m to return the grad argument.
%  
fprintf('nChecking Gradients (without regularization) ... n');

%  Check gradients by running checkNNGradients
checkCostFunction;

fprintf('nProgram paused. Press enter to continue.n');
pause;


%% ========= Part 4: Collaborative Filtering Cost Regularization ========
%  Now, you should implement regularization for the cost function for 
%  collaborative filtering. You can implement it by adding the cost of
%  regularization to the original cost computation.
%  

%  Evaluate cost function
J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
               num_features, 1.5);
           
fprintf(['Cost at loaded parameters (lambda = 1.5): %f '...
         'n(this value should be about 31.34)n'], J);

fprintf('nProgram paused. Press enter to continue.n');
pause;


%% ======= Part 5: Collaborative Filtering Gradient Regularization ======
%  Once your cost matches up with ours, you should proceed to implement 
%  regularization for the gradient. 
%

%  
fprintf('nChecking Gradients (with regularization) ... n');

%  Check gradients by running checkNNGradients
checkCostFunction(1.5);

fprintf('nProgram paused. Press enter to continue.n');
pause;


%% ============== Part 6: Entering ratings for a new user ===============
%  Before we will train the collaborative filtering model, we will first
%  add ratings that correspond to a new user that we just observed. This
%  part of the code will also allow you to put in your own ratings for the
%  movies in our dataset!
%
movieList = loadMovieList();

%  Initialize my ratings
my_ratings = zeros(1682, 1);

% Check the file movie_idx.txt for id of each movie in our dataset
% For example, Toy Story (1995) has ID 1, so to rate it "4", you can set
my_ratings(1) = 4;

% Or suppose did not enjoy Silence of the Lambs (1991), you can set
my_ratings(98) = 2;

% We have selected a few movies we liked / did not like and the ratings we
% gave are as follows:
my_ratings(7) = 3;
my_ratings(12)= 5;
my_ratings(54) = 4;
my_ratings(64)= 5;
my_ratings(66)= 3;
my_ratings(69) = 5;
my_ratings(183) = 4;
my_ratings(226) = 5;
my_ratings(355)= 5;

fprintf('nnNew user ratings:n');
for i = 1:length(my_ratings)
    if my_ratings(i) > 0 
        fprintf('Rated %d for %sn', my_ratings(i), ...
                 movieList{i});
    end
end

fprintf('nProgram paused. Press enter to continue.n');
pause;


%% ================== Part 7: Learning Movie Ratings ====================
%  Now, you will train the collaborative filtering model on a movie rating 
%  dataset of 1682 movies and 943 users
%

fprintf('nTraining collaborative filtering...n');

%  Load data
load('ex8_movies.mat');

%  Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by 
%  943 users
%
%  R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
%  rating to movie i

%  Add our own ratings to the data matrix
Y = [my_ratings Y];
R = [(my_ratings ~= 0) R];

%  Normalize Ratings
[Ynorm, Ymean] = normalizeRatings(Y, R);

%  Useful Values
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = 10;

% Set Initial Parameters (Theta, X)
X = randn(num_movies, num_features);
Theta = randn(num_users, num_features);

initial_parameters = [X(:); Theta(:)];

% Set options for fmincg
options = optimset('GradObj', 'on', 'MaxIter', 100);

% Set Regularization
lambda = 10;
theta = fmincg (@(t)(cofiCostFunc(t, Ynorm, R, num_users, num_movies, ...
                                num_features, lambda)), ...
                initial_parameters, options);

% Unfold the returned theta back into U and W
X = reshape(theta(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(theta(num_movies*num_features 1:end), ...
                num_users, num_features);

fprintf('Recommender system learning completed.n');

fprintf('nProgram paused. Press enter to continue.n');
pause;

%% ================== Part 8: Recommendation for you ====================
%  After training the model, you can now make recommendations by computing
%  the predictions matrix.
%

p = X * Theta';
my_predictions = p(:,1)   Ymean;

movieList = loadMovieList();

[r, ix] = sort(my_predictions, 'descend');
fprintf('nTop recommendations for you:n');
for i=1:10
    j = ix(i);
    fprintf('Predicting rating %.1f for movie %sn', my_predictions(j), ...
            movieList{j});
end

fprintf('nnOriginal ratings provided:n');
for i = 1:length(my_ratings)
    if my_ratings(i) > 0 
        fprintf('Rated %d for %sn', my_ratings(i), ...
                 movieList{i});
    end
end

0 人点赞