朴素贝叶斯和LDA分类规则产生显著较差的最小值。

2022-05-28 15:38:48 浏览数 (1)

Q1.m

代码语言:javascript复制
clear all; close all; clc;

n = 2;      % # of dimensions
N = 10000;  % # of samples

% Class mean and covariance
mu(:,1) = [-0.1;0]; Sigma(:,:,1) = [1 -0.9;-0.9 1];
mu(:,2) = [0.1;0];  Sigma(:,:,2) = [1 0.9; 0.9 1];

% Class priors and true labels
p = [0.8,0.2]; 
label = rand(1,N) >= p(1);
Nc = [sum(label==0),sum(label==1)];

% Draw samples from each class pdf
x = zeros(n,N);
x(:,label==0) = mvnrnd(mu(:,1),Sigma(:,:,1),Nc(1))';
x(:,label==1) = mvnrnd(mu(:,2),Sigma(:,:,2),Nc(2))';

% Plot true class labels
figure(1);
plot(x(1,label==0),x(2,label==0),'o',x(1,label==1),x(2,label==1),' ');
title('Class 0 and Class 1 True Class Labels')
xlabel('x_1'), ylabel('x_2')
legend('Class 0','Class 1')

%% ======================== Question 1: Part 1 ======================== %%
% Calculate discriminant scores and tau
discriminantScore = log(evalGaussian(x,mu(:,2),Sigma(:,:,2))./evalGaussian(x,mu(:,1),Sigma(:,:,1)));
tau = log(sort(discriminantScore(discriminantScore >= 0)));

% Find midpoints of tau to use as threshold values
mid_tau = [tau(1)-100 tau(1:end-1)   diff(tau)./2 tau(length(tau)) 100];

% Make decision for every threshold and calculate error values
for i = 1:length(mid_tau)
    decision = (discriminantScore >= mid_tau(i));
    pFA(i) = sum(decision==1 & label==0)/Nc(1); % False alarm prob.
    pCD(i) = sum(decision==1 & label==1)/Nc(2); % Correct detection prob.
    pE(i) = pFA(i)*p(1) (1-pCD(i))*p(2);        % Total error prob.
end

% Find minimum error and corresponding threshold
[min_error,min_index] = min(pE);
min_decision = (discriminantScore >= mid_tau(min_index));
min_FA = pFA(min_index); min_CD = pCD(min_index);

% Find theoretical minimum error(threshold calculated using class priors)
ideal_decision = (discriminantScore >= log(p(1)/p(2)));
ideal_pFA = sum(ideal_decision==1 & label==0)/Nc(1); % False alarm
ideal_pCD = sum(ideal_decision==1 & label==1)/Nc(2); % Correct detection
ideal_error = ideal_pFA*p(1) (1-ideal_pCD)*p(2);

% Plot ROC curve with minimum error point labeled
figure(2); plot(pFA,pCD,'-',min_FA,min_CD,'o',ideal_pFA,ideal_pCD,'g ');
title('Minimum Expected Risk ROC Curve'); legend('ROC Curve', 'Calculated Min Error', 'Theoretical Min Error');
xlabel('P_{False Alarm}'); ylabel('P_{Correct Detection}');

% Print all results
fprintf('<strong>Theoretical Results</strong>n');
fprintf('Minimum probability of error: %.2f%%nThreshold Value: %.2fn',ideal_error*100,p(1)/p(2));

fprintf('n<strong>Calculated Results</strong>n');
fprintf('Minimum probability of error: %.2f%%nThreshold Value: %.2fnn',min_error*100,exp(mid_tau(min_index)));

%% ======================== Question 1: Part 2 ======================== %%
Sigma_NB(:,:,1) = [1 0;0 1]; Sigma_NB(:,:,2) = [1 0;0 1];

% Calculate discriminant scores and tau
discriminantScore_NB = log(evalGaussian(x,mu(:,2),Sigma_NB(:,:,2))./evalGaussian(x,mu(:,1),Sigma_NB(:,:,1)));
tau_NB = log(sort(discriminantScore_NB(discriminantScore_NB >= 0)));

% Find midpoints of tau to use as threshold values
mid_tau_NB = [tau_NB(1)-1 tau_NB(1:end-1)   diff(tau_NB)./2 tau_NB(length(tau_NB)) 1];

% Make decision for every threshold and calculate error values
for i = 1:length(mid_tau_NB)
    decision_NB = (discriminantScore_NB >= mid_tau_NB(i));
    pFA_NB(i) = sum(decision_NB==1 & label==0)/Nc(1); % False alarm prob.
    pCD_NB(i) = sum(decision_NB==1 & label==1)/Nc(2); % Correct detection prob.
    pE_NB(i) = pFA_NB(i)*p(1) (1-pCD_NB(i))*p(2);        % Total error prob.
end

% Find minimum error and corresponding threshold
[min_error_NB,min_index_NB] = min(pE_NB);
min_decision_NB = (discriminantScore >= mid_tau_NB(min_index_NB));
min_FA_NB = pFA_NB(min_index_NB); min_CD_NB = pCD_NB(min_index_NB);

% Plot ROC curve with minimum error point labeled
figure(4); plot(pFA_NB,pCD_NB,'-',min_FA_NB,min_CD_NB,'o');
title('Naive-Bayesian ROC Curve'); legend('NB ROC Curve', 'NB Minimum Error');
xlabel('P_{False Alarm}'); ylabel('P_{Correct Detection}');

fprintf('n<strong>Calculated Results, Naive-Bayesian</strong>n');
fprintf('Minimum probability of error: %.2f%%nThreshold Value: %.2fnn',min_error_NB*100,exp(mid_tau_NB(min_index_NB)));

%% ======================== Question 1: Part 3 ======================== %%
% Code help and example from Prof. Deniz
% LDA setup
Sb = (mu(:,1)-mu(:,2))*(mu(:,1)-mu(:,2))';
Sw = Sigma(:,:,1)   Sigma(:,:,2);

% Calculating Fisher LDA projection vector
[V,D] = eig(inv(Sw)*Sb); % alpha w  = inv(Sw) Sb w
[~,ind] = sort(diag(D),'descend');
wLDA = V(:,ind(1));     % Fisher LDA projection vector
yLDA = wLDA'*x;         % All data projected on to the line spanned by wLDA
wLDA = sign(mean(yLDA(find(label==1)))-mean(yLDA(find(label==0))))*wLDA; % ensures class 1 falls on the   side of the axis
yLDA = sign(mean(yLDA(find(label==1)))-mean(yLDA(find(label==0))))*yLDA; % flip yLDA accordingly

% Plot LDA projection
figure(5);
plot(yLDA(find(label==0)),zeros(1,Nc(1)),'o',yLDA(find(label==1)),zeros(1,Nc(2)),' ');
title('LDA projection of data points and their true labels');
xlabel('x_1'); ylabel('x_2'); legend('Class 0','Class 1');

% Sort LDA projection vector and find midpoints
sorted_yLDA = sort(yLDA);
mid_tau_LDA = [sorted_yLDA(1)-1 sorted_yLDA(1:end-1) diff(sorted_yLDA)./2 sorted_yLDA(length(sorted_yLDA)) 1];

% Make decision for every threshold value and find error probabilities
for i = 1:length(mid_tau_LDA)-1
    decisionLDA = (yLDA >= mid_tau_LDA(i));
    pFA_LDA(i) = sum(decisionLDA==1 & label==0)/Nc(1); % False alarm
    pCD_LDA(i) = sum(decisionLDA==1 & label==1)/Nc(2); % Correct detection
    pE_LDA(i) = pFA_LDA(i)*p(1) (1-pCD_LDA(i))*p(2);
end

% Find minimum error and corresponding threshold
[min_error_LDA,min_index_LDA] = min(pE_LDA);
min_decision_LDA = (yLDA >= mid_tau_LDA(min_index_LDA));
min_FA_LDA = pFA_LDA(min_index_LDA); min_CD_LDA = pCD_LDA(min_index_LDA);

% Plot LDA ROC Curve
figure(6); plot(pFA_LDA,pCD_LDA,'-',min_FA_LDA,min_CD_LDA,'o');
title('Fisher LDA ROC Curve'); legend('LDA ROC Curve', 'LDA Minimum Error');
xlabel('P(False Alarm)'); ylabel('P(Correct Detection)');

%Print Results
fprintf('n<strong>Calculated Results, LDA</strong>n');
fprintf('Minimum probability of error: %.2f%%nThreshold Value (tau): %.2fnn',min_error_LDA*100,mid_tau_LDA(min_index_LDA));

%% ======================= Question 1: Functions ====================== %%
% Function credit: Prof. Deniz
function g = evalGaussian(x,mu,Sigma)
% Evaluates the Gaussian pdf N(mu,Sigma) at each coumn of X
[n,N] = size(x);

C = ((2*pi)^n * det(Sigma))^(-1/2); % coefficient
E = -0.5*sum((x-repmat(mu,1,N)).*(inv(Sigma)*(x-repmat(mu,1,N))),1); % exponent
g = C*exp(E); % final gaussian evaluation

end
lda

0 人点赞