tf.contrib.eager

2022-06-05 10:55:09 浏览数 (1)

TensorFlow Eager execution prototype.

EXPERIMENTAL: APIs here are unstable and likely to change without notice.

To use, at program startup, call tf.compat.v1.enable_eager_execution().

Modules

  • metrics module: Metrics namespace.

Classes

  • class Checkpoint: Groups trackable objects, saving and restoring them.
  • class Checkpointable: Manages dependencies on other objects.
  • class EagerVariableStore: Wrapper allowing functional layers to be used with eager execution.
  • class ExecutionCallback: Valid callback actions.
  • class GradientTape: Record operations for automatic differentiation.
  • class Iterator: An iterator producing tf.Tensor objects from a tf.data.Dataset.
  • class Network: Represents the composition of a set of Layers.
  • class Saver: A tf.compat.v1.train.Saver adapter for use when eager execution is enabled.
  • class Sequential: Represents a linear sequence of Layers or functions.
  • class TensorSpec: Describes a tf.Tensor.
  • class Variable: Variable based on resource handles.

Functions

  • add_execution_callback(...): Add an execution callback to the default eager context.
  • async_clear_error(...): Clears errors raised during ASYNC execution mode.
  • async_wait(...): Waits for ops dispatched in ASYNC mode to finish.
  • clear_execution_callbacks(...): Clear all execution callbacks from the default eager context.
  • connect_to_remote_host(...): Connects to a single machine to enable remote execution on it.
  • custom_gradient(...): Decorator to define a function with a custom gradient.
  • defun(...): Compiles a Python function into a callable TensorFlow graph.
  • enable_eager_execution(...): Enables eager execution for the lifetime of this program.
  • enable_remote_eager_execution(...): Enables eager execution for the lifetime of this program.
  • errstate(...): Context manager setting error state.
  • executing_eagerly(...): Returns True if the current thread has eager execution enabled.
  • execution_mode(...): Context manager for setting execution mode for current thread.
  • function(...): Creates a callable TensorFlow graph from a Python function.
  • get_optimizer_variables(...): Returns a list of variables for the given tf.compat.v1.train.Optimizer.
  • gradients_function(...): Returns a function which differentiates f with respect to params.
  • implicit_gradients(...): Returns a function which differentiates f with respect to variables.
  • implicit_value_and_gradients(...): Returns a function which differentiates f with respect to variables.
  • in_eager_mode(...): Returns True if the current thread has eager execution enabled.
  • inf_callback(...): A specialization of inf_nan_callback that checks for infs only.
  • inf_nan_callback(...): An execution callback that checks for infs and nans in output tensors.
  • list_devices(...): List the names of the available devices.
  • make_template(...): Make a template, optionally compiling func_ into a graph function.
  • nan_callback(...): A specialization of inf_nan_callback that checks for nans only.
  • num_gpus(...): Get the number of available GPU devices.
  • py_func(...): Wraps a python function into a TensorFlow op that executes it eagerly.
  • restore_network_checkpoint(...): Restore the Network from a checkpoint. (deprecated)
  • restore_variables_on_create(...): ContextManager that restores variables on creation.
  • run(...): Runs the program with an optional main function and argv list.
  • run_all_tests_in_graph_and_eager_modes(...): Execute all test methods in the given class with and without eager.
  • run_test_in_graph_and_eager_modes(...): Execute the decorated test with and without enabling eager execution.
  • save_network_checkpoint(...): Save variables from the Network to a checkpoint. (deprecated)
  • set_execution_mode(...): Sets execution mode for the current thread.
  • set_server_def(...)
  • seterr(...): Set how abnormal conditions are handled by the default eager context.
  • value_and_gradients_function(...): Returns a function that computes f and its derivative w.r.t. params.

0 人点赞