一、编译
汇编
CPU 由上亿个晶体管组成,在运行的时候,单个晶体管只能根据电流的流通或关闭来确认两种状态,我们一般说 0 或 1,根据这种状态,人类创造了二进制,通过二进制编码我们可以表示所有的概念。但是,CPU 依然只能执行二进制代码。我们将一组二进制代码合并成一个指令或符号,创造了汇编语言,汇编语言以一种相对好理解的方式来编写,然后通过汇编过程生成 CPU 可以运行的二进制代码并运行在 CPU 上。
编译
编译器将原始程序(Source program)作为输入,翻译产生使用目标语言(Target language)的等价程序。源代码一般为高阶语言 (High-level language), 如C、C 、C# 、Objective-C、Swift、Java 等,而目标语言则是汇编语言或目标机器的目标代码(Object code),有时也称作机器代码(Machine code)
编译型语言和解释型语言
编译程序是整体编译完了,再一次性执行。 而解释程序是一边解释,一边执行。
编译型语言:C系,java
解释型语言:html、javascript
二、LLVM、Clang
LLVM
LLVM本身并不是编译器,只是一套用于开发编译器、解释器等程序语言相关工具的库,主要聚焦于编译器后端功能,如代码生成、代码优化、JIT等。
LLVM1 an umbrella project that hosts and develops a set of close-knit low-level toolchain components (e.g., assemblers, compilers, debuggers, etc.) LLVM 是一个涵盖和开发一系列紧密结合的低级工具链组件(例如,汇编器,编译器,调试器等)的综合项目
传统的编译器通常分为三个部分,前端(frontEnd),优化器(Optimizer)和后端(backEnd),在编译过程中,前端主要负责词法和语法分析,将源代码转化为抽象语法树;优化器则是在前端的基础上,对得到的中间代码进行优化,使代码更加高效;后端则是将已经优化的中间代码转化为针对各自平台的机器代码。
Clang
Clang 是一个C、C 、Objective-C和Objective-C 编程语言的编译器前端。它采用了LLVM作为其后端。
Clang是2005年由苹果电脑发起,是LLVM编译器工具集的前端(front-end),目的是输出代码对应的抽象语法树(Abstract Syntax Tree, AST),并将代码编译成LLVM Bitcode。接着在后端(back-end)使用LLVM编译成平台相关的机器语言 。Clang支持C、C 、Objective C。
Clang本身性能优异,其生成的AST所耗用掉的内存仅仅是GCC的20%左右,测试证明Clang编译Objective-C代码时速度为GCC的3倍,还能针对用户发生的编译错误准确地给出建议。
三、iOS中的编译
Objective C采用Clang作为前端,而Swift则采用swift()作为前端,二者LLVM(Low level vritual machine)作为编译器后端。编译过程如下图
来看看一个文件的编译过程,新建Test.m
代码语言:javascript复制#import <Foundation/Foundation.h>
int main(){
@autoreleasepool {
NSLog(@"%@",@"Hello Leo");
}
return 0;
}
在终端输入:
代码语言:javascript复制clang -ccc-print-phases -framework Foundation test.m -o test
会看到下列的:
代码语言:javascript复制0: input, "Foundation", object
1: input, "test.m", objective-c
2: preprocessor, {1}, objective-c-cpp-output//预处理
3: compiler, {2}, ir //编译生成IR(中间代码)
4: backend, {3}, assembler//汇编器生成汇编代码
5: assembler, {4}, object//生成机器码
6: linker, {0, 5}, image//链接
7: bind-arch, "x86_64", {6}, image//生成Image,也就是最后的可执行文件
编译器前端
编译器前端的任务是进行:语法分析,语义分析,生成中间代码(intermediate representation )。在这个过程中,会进行类型检查,如果发现错误或者警告会标注出来在哪一行。
编译器优化
LVVM优化器会进行BitCode的生成,链接期优化等等
编译器后端
LLVM机器码生成器会针对不同的架构,比如arm64等生成不同的机器码
四、Xcode执行Build的流程
dSYM 文件
我们在每次编译过后,都会生成一个dsym文件。dsym文件中,存储了16进制的函数地址映射。
在App实际执行的二进制文件中,是通过地址来调用方法的。在App crash的时候,第三方工具(Fabric,友盟等)会帮我们抓到崩溃的调用栈,调用栈里会包含crash地址的调用信息。然后,通过dSYM文件,我们就可以由地址映射到具体的函数位置。
五、提高项目Build速度
查看编译时间
我们需要一个途径,能够看到编译的时间,这样才能有个对比,知道我们的优化究竟有没有效果。 对于XCode 8,关闭XCode,终端输入以下指令
代码语言:javascript复制$ defaults write com.apple.dt.Xcode ShowBuildOperationDuration YES
代码优化-forward declaration
@class CLASSNAME
,而不是#import CLASSNAME.h
。这样,编译器能大大提高#import的替换速度。
对常用工具类打包
打包成Framework或者静态库,这样编译的时候这部分代码就不需要重新编译了。
常用头文件放到预编译文件里
XCode的pch文件是预编译文件,这里的内容在执行XCode build之前就已经被预编译,并且引入到每一个.m文件里了。
编译器选项优化
Debug模式下,不生成dsym文件
上文提到了,dysm文件里存储了调试信息,在Debug模式下,我们可以借助XCode和LLDB进行调试。所以,不需要生成额外的dsym文件来降低编译速度。
Debug开启Build Active Architecture Only
在XCode -> Build Settings -> Build Active Architecture Only 改为YES。这样做,可以只编译当前的版本,比如arm7/arm64等等,记得只开启Debug模式。这个选项在高版本的XCode中自动开启了。