文章:《Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty》
数据集是 GSE157007 ,共产生了 high-quality scRNA-seq data from 114,467 mononuclear cells
样品队列
样品分成4个分组
可以看到, 样品分成4个分组,cord blood, young adults and healthy and frail old adults :
- 新生儿脐带血(n=3)
- 青年组PBMCs(n=3)
- 健康老年组PBMCs(n=6)
- 体弱老年组PBMCs(n=5)
3个单细胞技术 :
- single-cell RNA sequencing (scRNA-seq),
- T-cell antigen receptor (TCR) repertoire sequencing (scTCR-seq)
- surface protein antibody-barcode sequencing (CCR7, CD45RA, CD4 and CD8 )
第一层次降维聚类分群
初步分成了 17 clusters ,大家在进行血液单细胞免疫亚群细分的时候可以参考 :
- Clusters 1, 2 and 3 were distinguishable as naïve, memory CD4 and memory CD8 T cells,
- Cluster 6 and 9 with mixed expression of CD4 and CD8 were named as ‘other T cells’
- Clusters 7 and 16 (CD79A, CD74 and MS4A1 high) were identified as B cells and antigen presenting B (APC B) cells, respectively
- Clusters 5, 8 and 14 (NKG7, GNLY, KLRB1 and GZMB high) were identified as natural killer (NK) cells.
- The myeloid lineage cells (clusters 4, 10 and 12) were classified as classical, intermediate and nonclassical monocytes, respectively, attributing to varying levels of S100A9, LYZ, IL1B and FCGR3A expression.
- myeloid dendritic cells (mDCs; cluster 11),
- plasmacytoid DCs (pDCs; cluster 15),
- platelets (cluster 13)
- granulocytes (cluster 17)
基本上跟我们一直给大家的单细胞亚群标记基因差不多了。
初步分成了 17 clusters
接下来就是对每个单细胞亚群进行细分了,比如T细胞,可以看到跟肿瘤微环境单细胞转录组的T细胞构成很不一样,没有大量的耗竭相关t细胞 :
T细胞细分亚群
因为有4个分组,cord blood, young adults and healthy and frail old adults ,所以可以看不同组的不同单细胞亚群的比例情况差异,如下所示 。
细胞亚群的比例情况差异
可以看到规律是:
- B细胞占比在各年龄组中相对稳定
- 单核细胞在青年组中占比较低,在新生组和老年组占比均较高
- 新生组样本中,包含大量的Naïve T细胞和极少量的Memory T细胞
- Naïve T细胞的比例随着年龄的增长而呈现出减少的趋势,从青年组过渡至老年组时,Naïve T细胞的数量更是急剧下降
- 体弱老年组CD4 T CM细胞较多,健康老年组CD8 T CM和Treg细胞较多。这可能意味着CD8 和CD4 T CM细胞之间的平衡在维持老年人免疫系统的活力中起着重要作用
因为还有scTCR-seq,所以需要跟这个普通单细胞转录组表达量矩阵数据分析结合起来,也是同样的看不同分组样品的差异即可。
大家可以去看看OSCA单细胞数据分析
单细胞的多组对照设计(例如正常组与给药组)可以为细胞类型水平比较提供以往Bulk RNA-seq分析所不能达到的精度。对此一般有两种进阶分析思路:
- (1)DE(Differential expression)--两组样本的同一细胞类型的基因表达差异分析;
- (2)DA(Differential abundance)--两组样本的同一细胞类型的丰度差异分析