关于前馈和反相传播的原理,下面这张实例非常清楚:
代码语言:javascript复制import torch
import matplotlib.pyplot as plt
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w = torch.Tensor([1.0])
w.requires_grad = True # 需要计算梯度
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y)
l.backward()
print('tgrad:', x, y, w.grad.item())
w.data = w.data - 0.01 * w.grad.data
w.grad.data.zero_() #每一步传完,梯度清零很重要
print("progress:", epoch, l.item())
print("predict (after training)", 4, forward(4).item())
细节提要: Tensor张量可以视作数据结构:数据data 梯度grad(grad也是张量) 核心代码:l.backward()反向传播,程序自动求出所有需要的梯度 w.grad.data.zero_()每步做完清零很重要,否则影响下一次求的梯度