OpenCV项目(20)|Blob找坏点

2022-06-16 16:29:20 浏览数 (1)

应用:

五种方式将镜子中的“污点”的准 确位置找出来,并确定其大小、形状及面积。

代码:

代码语言:javascript复制
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <vector>
#include <map>
#include <iostream>

using namespace std;
using namespace cv;


static void help()
{
    cout << "n This program demonstrates how to use BLOB to detect and filter region n"
        "Usage: n"
        "  ./detect_blob <image1(detect_blob.png as default)>n"
        "Press a key when image window is active to change descriptor";
}


static String Legende(SimpleBlobDetector::Params &pAct)
{
    String s = "";
    //blob通过面积过滤
    if (pAct.filterByArea)
    {
        String inf = static_cast<const ostringstream&>(ostringstream() << pAct.minArea).str();
        String sup = static_cast<const ostringstream&>(ostringstream() << pAct.maxArea).str();
        s = " Area range ["   inf   " to  "   sup   "]";
    }
     //blob通过圆过滤
    if (pAct.filterByCircularity)
    {
        String inf = static_cast<const ostringstream&>(ostringstream() << pAct.minCircularity).str();
        String sup = static_cast<const ostringstream&>(ostringstream() << pAct.maxCircularity).str();
        if (s.length() == 0)
            s = " Circularity range ["   inf   " to  "   sup   "]";
        else
            s  = " AND Circularity range ["   inf   " to  "   sup   "]";
    }
     //blob通过颜色过滤
    if (pAct.filterByColor)
    {
        String inf = static_cast<const ostringstream&>(ostringstream() << (int)pAct.blobColor).str();
        if (s.length() == 0)
            s = " Blob color "   inf;
        else
            s  = " AND Blob color "   inf;
    }
    if (pAct.filterByConvexity)
    {
        String inf = static_cast<const ostringstream&>(ostringstream() << pAct.minConvexity).str();
        String sup = static_cast<const ostringstream&>(ostringstream() << pAct.maxConvexity).str();
        if (s.length() == 0)
            s = " Convexity range["   inf   " to  "   sup   "]";
        else
            s  = " AND  Convexity range["   inf   " to  "   sup   "]";
    }
    if (pAct.filterByInertia)
    {
        String inf = static_cast<const ostringstream&>(ostringstream() << pAct.minInertiaRatio).str();
        String sup = static_cast<const ostringstream&>(ostringstream() << pAct.maxInertiaRatio).str();
        if (s.length() == 0)
            s = " Inertia ratio range ["   inf   " to  "   sup   "]";
        else
            s  = " AND  Inertia ratio range ["   inf   " to  "   sup   "]";
    }
    return s;
}



int main(int argc, char *argv[])
{
    String fileName;
    cv::CommandLineParser parser(argc, argv, "{@input |detect_blob.png| }{h help | | }");
    if (parser.has("h"))
    {
        help();
        return 0;
    }
    fileName = parser.get<string>("@input");
    Mat img = imread(fileName, IMREAD_COLOR);
    if (img.empty())
    {
        cout << "Image " << fileName << " is empty or cannot be foundn";
        return 1;
    }

    SimpleBlobDetector::Params pDefaultBLOB;
    //核心参数
    pDefaultBLOB.thresholdStep = 10;//步进阈值
    pDefaultBLOB.minThreshold = 10;
    pDefaultBLOB.maxThreshold = 220;
    pDefaultBLOB.minRepeatability = 2;
    pDefaultBLOB.minDistBetweenBlobs = 10;
    //颜色过滤参数
    pDefaultBLOB.filterByColor = false;
    pDefaultBLOB.blobColor = 0; 
    //面积过滤参数
    pDefaultBLOB.filterByArea = false;
    pDefaultBLOB.minArea = 25;
    pDefaultBLOB.maxArea = 5000;

    pDefaultBLOB.filterByCircularity = false;
    pDefaultBLOB.minCircularity = 0.9f;
    pDefaultBLOB.maxCircularity = (float)1e37;

    pDefaultBLOB.filterByInertia = false;
    pDefaultBLOB.minInertiaRatio = 0.1f;
    pDefaultBLOB.maxInertiaRatio = (float)1e37;

    pDefaultBLOB.filterByConvexity = false;
    pDefaultBLOB.minConvexity = 0.95f;
    pDefaultBLOB.maxConvexity = (float)1e37;

    // 参数初始化BLOB检测器
    vector<String> typeDesc;
    vector<SimpleBlobDetector::Params> pBLOB;
    vector<SimpleBlobDetector::Params>::iterator itBLOB;

    // Color palette
    vector< Vec3b >  palette;
    for (int i = 0; i<65536; i  )
    {
        uchar c1 = (uchar)rand();
        uchar c2 = (uchar)rand();
        uchar c3 = (uchar)rand();
        palette.push_back(Vec3b(c1, c2, c3));
    }
    help();

    typeDesc.push_back("BLOB");    // see http://docs.opencv.org/master/d0/d7a/classcv_1_1SimpleBlobDetector.html
    pBLOB.push_back(pDefaultBLOB);
    pBLOB.back().filterByArea = true;
    pBLOB.back().minArea = 1;
    pBLOB.back().maxArea = float(img.rows*img.cols);
    // 1
    typeDesc.push_back("BLOB");
    pBLOB.push_back(pDefaultBLOB);
    pBLOB.back().filterByArea = true;
    pBLOB.back().minArea = 500;
    pBLOB.back().maxArea = 2900;
    //2
    typeDesc.push_back("BLOB");
    pBLOB.push_back(pDefaultBLOB);
    pBLOB.back().filterByCircularity = true;
    // 3
    typeDesc.push_back("BLOB");
    pBLOB.push_back(pDefaultBLOB);
    pBLOB.back().filterByInertia = true;
    pBLOB.back().minInertiaRatio = 0;
    pBLOB.back().maxInertiaRatio = (float)0.2;
    // 4
    typeDesc.push_back("BLOB");
    pBLOB.push_back(pDefaultBLOB);
    pBLOB.back().filterByConvexity = true;
    pBLOB.back().minConvexity = 0.;
    pBLOB.back().maxConvexity = (float)0.9;
    //5
    typeDesc.push_back("BLOB");
    pBLOB.push_back(pDefaultBLOB);
    pBLOB.back().filterByColor = true;
    pBLOB.back().blobColor = 0;

    itBLOB = pBLOB.begin();
    vector<double> desMethCmp;
    Ptr<Feature2D> b;
    String label;
   
    vector<String>::iterator itDesc;
    for (itDesc = typeDesc.begin(); itDesc != typeDesc.end();   itDesc)
    {
        vector<KeyPoint> keyImg1;
        if (*itDesc == "BLOB")
        {   
            b = SimpleBlobDetector::create(*itBLOB);//创建blob算子
            label = Legende(*itBLOB); //选择过滤方式
              itBLOB;
        }
        try
        {
            vector<KeyPoint>  keyImg;
            vector<Rect>  zone;
            vector<vector <Point> >  region;
            Mat     desc, result(img.rows, img.cols, CV_8UC3);
            if (b.dynamicCast<SimpleBlobDetector>().get())
            {
                Ptr<SimpleBlobDetector> sbd = b.dynamicCast<SimpleBlobDetector>();
                sbd->detect(img, keyImg, Mat());
                drawKeypoints(img, keyImg, result);
                int i = 0;
                for (vector<KeyPoint>::iterator k = keyImg.begin(); k != keyImg.end();   k,   i)
                    circle(result, k->pt, (int)k->size, palette[i % 65536]);
            }
            namedWindow(*itDesc   label, WINDOW_AUTOSIZE);
            imshow(*itDesc   label, result);
            imshow("Original", img);
            waitKey();
        }
        catch (const Exception& e)
        {
            cout << "Feature : " << *itDesc << "n";
            cout << e.msg << endl;
        }
    }
    return 0;
}

效果:


0 人点赞