动态规划——最大连乘子序列

2022-06-23 12:45:35 浏览数 (1)

昨天去富途面试实习生的时候问到了这样的一道题,记录一下。

题目

求出一串数的最大连乘子序列的乘积。所谓最大连乘子序列,就是指连续的子序列中的乘积最大的那个子序列,比如{-2.5, 3, 0, 2, 4, -6, -2},2*4*(-6)*(-2)就是乘积最大的连续子序列,结果为96。

思路一

循环暴力破解法,就是穷举所有的子串,然后求出乘积最大的那个,时间复杂度为O(n^2)

思路二

采用动态规划的思想。

从左到右记录:以某个数 nums[i] 结尾的最小连乘(min_cur)和最大连乘(max_cur),然后最终选出最大的那个。之所以要记录最小连乘,是因为数字中可能存在负数,当到达一个负数时,乘上上一次的最小连乘才能得出以目前数作为结尾的最大连乘。

最小连乘和最大连乘是从三个值中进行选择,分别是max_cur*nums[i],min_cur*nums[i])和nums[i]。前两个好理解,第三个是因为有可能不乘上前面的数,自己更大或更小,比如nums[i]是正数,而前面一个数刚好是0,自然就要在这里截断。

代码

代码语言:javascript复制
double maxProduct(double nums[], int size){
	if(sizeof(nums) == 0) return 0;
	double max_cur = nums[0];
	double min_cur = nums[0];
	double max_final = nums[0];
	for(int i = 1; i < size; i  ){
		double tempMax = max_cur;
		double tempMin = min_cur;
		max_cur = max(max(tempMax*nums[i], tempMin*nums[i]), nums[i]);
		min_cur = min(min(tempMax*nums[i], tempMin*nums[i]), nums[i]);
		if(max_cur > max_final){
			max_final = max_cur;
		}
	}
	return max_final;
}

0 人点赞