执行计划路径选择
postgres查询规划过程中,查询请求的不同执行方案是通过建立不同的路径来表达的,在生成许多符合条件的路径之后,要从中选择出代价最小的路径,把它转化为一个计划,传递给执行器执行,规划器的核心工作就是生成多条路径,然后从中找出最优的那一条。
代价评估
评估路径优劣的依据是用系统表pg_statistic中的统计信息估算出来的不同路径的代价(cost),PostgreSQL估计计划成本的方式:基于统计信息估计计划中各个节点的成本。PostgreSQL会分析各个表来获取一个统计信息样本(这个操作通常是由autovacuum这个守护进程周期性的执行analyze,来收集这些统计信息,然后保存到pg_statistic和pg_class里面)。
用于估算代价的参数postgresql.conf
代码语言:javascript复制# - Planner Cost Constants -#seq_page_cost = 1.0 # measured on an arbitrary scale 顺序磁盘扫描时单个页面的开销
#random_page_cost = 4.0 # same scale as above 随机磁盘访问时单页面的读取开销
#cpu_tuple_cost = 0.01 # same scale as above cpu处理每一行的开销
#cpu_index_tuple_cost = 0.005 # same scale as above cpu处理每个索引行的开销
#cpu_operator_cost = 0.0025 # same scale as above cpu处理每个运算符或者函数调用的开销
#parallel_tuple_cost = 0.1 # same scale as above 计算并行处理的成本,如果成本高于非并行,则不会开启并行处理。
#parallel_setup_cost = 1000.0 # same scale as above
#min_parallel_relation_size = MB
#effective_cache_size = GB 再一次索引扫描中可用的文件系统内核缓冲区有效大小
也可以使用 show all的方式查看
路径的选择
代码语言:javascript复制--查看表信息db_jcxxglpt=# d t_jcxxgl_tjaj Table "db_jcxx.t_jcxxgl_tjaj" Column | Type | Modifiers
-------------- -------------------------------- -----------
c_bh | character() | not null
c_xzdm | character varying() |
c_jgid | character() |
c_ajbm | character() | ...
Indexes:
"t_jcxxgl_tjaj_pkey" PRIMARY KEY, btree (c_bh)
"idx_ttjaj_cah" btree (c_ah)
"idx_ttjaj_dslrq" btree (d_slrq)
首先更新统计信息vacuum analyze t_jcxxgl_tjaj,许多时候可能因为统计信息的不准确导致了不正常的执行计划--执行计划,全表扫描db_jcxxglpt=# explain (analyze,verbose,costs,buffers,timing)select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >='2018-03-18';
QUERY PLAN
------------------------------------------------------------------------------------------------------------
Seq Scan on db_jcxx.t_jcxxgl_tjaj (cost=0.00..9.76 rows= width=) (actual time=1.031..1.055 rows= loops=)
Output: c_bh, c_xzdm, c_jgid, c_ajbm Filter: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18'::date) Rows Removed by Filter:
Buffers: shared hit=
Planning time: 6.579 ms
Execution time: 1.163 ms
( rows)--执行计划,关闭全表扫描db_jcxxglpt=# set session enable_seqscan = off;SETdb_jcxxglpt=# explain (analyze,verbose,costs,buffers,timing)select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >='2018-03-18';
QUERY PLAN
------------------------------------------------------------------------------------------------------------
Index Scan using idx_ttjaj_dslrq on db_jcxx.t_jcxxgl_tjaj (cost=0.14..13.90 rows= width=) (actual time=0.012..0.026 rows= loops=)
Output: c_bh, c_xzdm, c_jgid, c_ajbm
Index Cond: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18'::date)
Buffers: shared hit=
Planning time: 0.309 ms
Execution time: 0.063 ms
( rows)
d_slrq上面有btree索引,但是查看执行计划并没有走索引,这是为什么呢?
代价计算:
一个路径的估算由三部分组成:启动代价(startup cost),总代价(totalcost),执行结果的排序方式(pathkeys)
代价估算公式:总代价=启动代价 I/O代价 CPU代价(cost=S P W*T)
P:执行时要访问的页面数,反应磁盘的I/O次数
T:表示在执行时所要访问的元组数,反映了cpu开销
W:表示磁盘I/O代价和CPU开销建的权重因子
统计信息:统计信息的其中一部分是每个表和索引中项的总数,以及每个表和索引占用的磁盘块数。这些信息保存在pg_class表的reltuples和relpages列中。我们可以这样查询相关信息:--查看统计信息db_jcxxglpt=# select relpages,reltuples from pg_class where relname ='t_jcxxgl_tjaj';
relpages | reltuples
---------- -----------
| ( row)
total_cost = (seq_page_cost)*(磁盘总页数) 0.01(cpu_tuple_cost)*(表的总记录数) 0.0025(cpu_operation_cost)*(表的总记录数)=9.7625可以看到走索引的cost=13.90比全表扫描cost=9.76要大。在表较小的情况下,全表扫描比索引扫描更有效, index scan 至少要发生两次I/O,一次是读取索引块,一次是读取数据块。
seq_scan源码
代码语言:javascript复制/*
* cost_seqscan
* Determines and returns the cost of scanning a relation sequentially.
*
* 'baserel' is the relation to be scanned
* 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
*/void
cost_seqscan(Path *path, PlannerInfo *root,
RelOptInfo *baserel, ParamPathInfo *param_info)
{
Cost startup_cost = ;
Cost cpu_run_cost;
Cost disk_run_cost; double spc_seq_page_cost;
QualCost qpqual_cost;
Cost cpu_per_tuple; /* Should only be applied to base relations */
Assert(baserel->relid > );
Assert(baserel->rtekind == RTE_RELATION); /* Mark the path with the correct row estimate */
if (param_info)
path->rows = param_info->ppi_rows; else
path->rows = baserel->rows;
if (!enable_seqscan)
startup_cost = disable_cost; /* fetch estimated page cost for tablespace containing table */
get_tablespace_page_costs(baserel->reltablespace, NULL,&spc_seq_page_cost); /*
* disk costs
*/
disk_run_cost = spc_seq_page_cost * baserel->pages; /* CPU costs */
get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
startup_cost = qpqual_cost.startup;
cpu_per_tuple = cpu_tuple_cost qpqual_cost.per_tuple;
cpu_run_cost = cpu_per_tuple * baserel->tuples; /* tlist eval costs are paid per output row, not per tuple scanned */
startup_cost = path->pathtarget->cost.startup;
cpu_run_cost = path->pathtarget->cost.per_tuple * path->rows; /* Adjust costing for parallelism, if used. */
if (path->parallel_workers > )
{ double parallel_divisor = get_parallel_divisor(path); /* The CPU cost is divided among all the workers. */
cpu_run_cost /= parallel_divisor; /*
* It may be possible to amortize some of the I/O cost, but probably
* not very much, because most operating systems already do aggressive
* prefetching. For now, we assume that the disk run cost can't be
* amortized at all.
*/
/*
* In the case of a parallel plan, the row count needs to represent
* the number of tuples processed per worker.
*/
path->rows = clamp_row_est(path->rows / parallel_divisor);
}
path->startup_cost = startup_cost;
path->total_cost = startup_cost cpu_run_cost disk_run_cost;
}
一个SQL优化实例
代码语言:javascript复制慢SQL:select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly from db_zxzhld.t_zhld_db dbxx join db_zxzhld.t_zhld_ajdbxx dbaj
on dbxx.c_bh = dbaj.c_dbbh where dbxx.n_valid= and dbxx.n_state in (,,) and dbxx.c_dbztbh='1003'
and dbaj.c_zblx='1003' and dbaj.c_dbfy='0' and dbaj.c_gy = '2550'
and c_ajbh in (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = and c_zblx = '1003' and c_gy = '2550' )
order by d_larq asc, c_ajbh asc limit offset 慢sql耗时:s
咋们先过下这个sql是干什么的、首先dbxx和dbaj的一个join连接然后dbaj.c_ajbh要包含在zbaj表里面,做了个排序,取了条记录、大概就这样。
Sql有个缺点就是我不知道查询的字段是从那个表里面取的、建议加上表别名.字段。
查看该sql的表的数据量:
db_zxzhld.t_zhld_db :db_zxzhld.t_zhld_ajdbxx :db_zxzhld.t_zhld_zbajxx :
执行计划: Limit (cost=36328.67..36328.68 rows= width=) (actual time=88957.677..88957.729 rows= loops=) -> Sort (cost=36328.67..36328.68 rows= width=) (actual time=88957.653..88957.672 rows= loops=) Sort Key: dbaj.d_larq, dbaj.c_ajbh Sort Method: top-N heapsort Memory: kB -> Nested Loop Semi Join (cost=17099.76..36328.66 rows= width=) (actual time=277.794..88932.662 rows= loops=) Join Filter: ((dbaj.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text) Rows Removed by Join Filter: -> Nested Loop (cost=0.00..19200.59 rows= width=) (actual time=199.141..601.845 rows= loops=) Join Filter: (dbxx.c_bh = dbaj.c_dbbh) Rows Removed by Join Filter: -> Seq Scan on t_zhld_ajdbxx dbaj (cost=0.00..19117.70 rows= width=) (actual time=198.871..266.182 rows= loops=) Filter: ((n_valid = ) AND ((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text)) Rows Removed by Filter: -> Materialize (cost=0.00..66.48 rows= width=) (actual time=0.001..0.017 rows= loops=) -> Seq Scan on t_zhld_db dbxx (cost=0.00..66.45 rows= width=) (actual time=0.044..0.722 rows= loops=) Filter: ((n_valid = ) AND ((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[]))) Rows Removed by Filter: -> Materialize (cost=17099.76..17117.46 rows= width=) (actual time=0.006..4.890 rows= loops=) -> HashAggregate (cost=17099.76..17106.84 rows= width=) (actual time=44.011..54.924 rows= loops=) Group Key: t_zhld_zbajxx.c_ajbh -> Bitmap Heap Scan on t_zhld_zbajxx (cost=163.36..17097.99 rows= width=) (actual time=5.218..30.278 rows= loops=) Recheck Cond: ((n_dbzt = ) AND ((c_zblx)::text = '1003'::text)) Filter: ((c_gy)::text = '2550'::text) Rows Removed by Filter: Heap Blocks: exact= -> Bitmap Index Scan on i_tzhldzbajxx_zblx_dbzt (cost=0.00..163.19 rows= width=) (actual time=5.011..5.011 rows= loops=) Index Cond: ((n_dbzt = ) AND ((c_zblx)::text = '1003'::text)) Planning time: 1.258 ms Execution time: 88958.029 ms
执行计划解读::第->行,通过索引i_tzhldzbajxx_zblx_dbzt过滤表t_zhld_zbajxx的数据,然后根据过滤条件(c_gy)::text = '2550'::text过滤最终返回条数据:第->行,根据条件过滤t_zhld_db表的数据,最终返回了条数据:第->行,对表t_zhld_zbajxx做group by的操作:第->行,全表扫描t_zhld_ajdbxx 最终返回了条数据:第行,根据t_zhld_ajdbxx返回的条结果集作为驱动表和t_zhld_db的结果集(条)做嵌套循环,t_zhld_db的结果集被循环了次。然后过滤掉了其中的条记录,那么最终将得到(*-111865) = :第->行,根据第和行返回的结果集最终做了Nested Loop Semi Join,第行的条结果集被循环了次,(*-37018710)=: 第->行,对最终的条记录进行排序:第行,limit最终获取条记录
整个执行计划中耗时最长的地方在行Nested Loop Semi Join,actual time=277.794..88932.662,
表db_zxzhld.t_zhld_db dbxx和db_zxzhld.t_zhld_ajdbxx均是全表扫描
具体优化步骤
代码语言:javascript复制查看索引页并没有索引,创建c_ajbh,c_dbbh等逻辑外键的索引drop index if exists I_T_ZHLD_AJDBXX_AJBH;create index I_T_ZHLD_AJDBXX_AJBH on T_ZHLD_AJDBXX (c_ajbh);commit;drop index if exists I_T_ZHLD_AJDBXX_DBBH;create index I_T_ZHLD_AJDBXX_DBBH on T_ZHLD_AJDBXX (c_dbbh);commit;
创建d_larq,c_ajbh的排序索引:drop index if exists I_T_ZHLD_AJDBXX_m6;create index I_T_ZHLD_AJDBXX_m6 on T_ZHLD_AJDBXX (c_zblx,c_dbfy,c_gy,d_larq asc,c_ajbh asc);commit;drop index if exists I_T_ZHLD_ZBAJXX_h3 ;create index I_T_ZHLD_ZBAJXX_h3 on db_zxzhld.t_zhld_zbajxx (n_dbzt,c_zblx,c_gy,c_gy);commit;
创建索引后执行计划有了改变,原来的dbaj表和dbxx表先做nestedloop变成了zbaj和dbaj表先做了nestedloop join,总的cost也从36328.68降到了12802.87,
Limit (cost=12802.87..12802.87 rows= width=) (actual time=4263.598..4263.648 rows= loops=) -> Sort (cost=12802.87..12802.87 rows= width=) (actual time=4263.592..4263.609 rows= loops=)
Sort Key: dbaj.d_larq, dbaj.c_ajbh
Sort Method: top-N heapsort Memory: kB -> Nested Loop (cost=2516.05..12802.86 rows= width=) (actual time=74.240..4239.723 rows= loops=) Join Filter: (dbaj.c_dbbh = dbxx.c_bh) Rows Removed by Join Filter:
-> Nested Loop (cost=2516.05..12736.34 rows= width=) (actual time=74.083..327.974 rows= loops=) -> HashAggregate (cost=2515.62..2522.76 rows= width=) (actual time=74.025..90.185 rows= loops=) Group Key: ("ANY_subquery".c_ajbh)::text -> Subquery Scan on "ANY_subquery" (cost=2499.56..2513.84 rows= width=) (actual time=28.782..59.823 rows= loops=) -> HashAggregate (cost=2499.56..2506.70 rows= width=) (actual time=28.778..39.968 rows= loops=) Group Key: zbaj.c_ajbh -> Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx zbaj (cost=0.42..2497.77 rows= width=) (actual time=0.062..15.104 rows= loops=)
Index Cond: ((n_dbzt = ) AND ((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text)) -> Index Scan using i_t_zhld_ajdbxx_ajbh on t_zhld_ajdbxx dbaj (cost=0.42..14.29 rows= width=) (actual time=0.015..0.021 rows= loops=)
Index Cond: ((c_ajbh)::text = ("ANY_subquery".c_ajbh)::text) Filter: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text)) Rows Removed by Filter:
-> Seq Scan on t_zhld_db dbxx (cost=0.00..66.45 rows= width=) (actual time=0.015..0.430 rows= loops=) Filter: ((n_valid = ) AND ((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[]))) Rows Removed by Filter: Planning time: 1.075 ms
Execution time: 4263.803 ms
执行的时间还是要4s左右仍然不满足需求,并且没有使用上I_T_ZHLD_AJDBXX_m6这个索引。
等价改写SQL(1)
代码语言:javascript复制等价改写:将排序条件加入db_zxzhld.t_zhld_ajdbxx让其先排序,再和t_zhld_db表连接。
修改后sql:Select dbaj.c_ajbh, dbaj.c_ah, dbaj.c_cbfy, dbaj.c_cbrxm, dbaj.d_larq, dbaj.d_jarq, dbaj.n_dbjg, dbaj.c_yqly
from (select * from db_zxzhld.t_zhld_db where n_valid= and n_state in (,,) and c_dbztbh='1003' )dbxx join (select * from db_zxzhld.t_zhld_ajdbxx
where n_valid= and c_zblx='1003'
and c_dbfy='0' and c_gy = '2550' and c_ajbh in (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc, c_ajbh asc)dbajon dbxx.c_bh = dbaj.c_dbbh
limit offset 再次查看执行计划:
Limit (cost=3223.92..3231.97 rows= width=) (actual time=127.291..127.536 rows= loops=) -> Nested Loop (cost=3223.92..3231.97 rows= width=) (actual time=127.285..127.496 rows= loops=) -> Sort (cost=3223.64..3223.65 rows= width=) (actual time=127.210..127.225 rows= loops=)
Sort Key: t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh
Sort Method: quicksort Memory: kB -> Hash Semi Join (cost=2523.19..3223.63 rows= width=) (actual time=55.913..107.265 rows= loops=)
Hash Cond: ((t_zhld_ajdbxx.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text) -> Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx (cost=0.42..700.28 rows= width=) (actual time=0.065..22.005 rows= loops=)
Index Cond: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text)) -> Hash (cost=2513.84..2513.84 rows= width=) (actual time=55.802..55.802 rows= loops=)
Buckets: (originally ) Batches: (originally ) Memory Usage: kB -> HashAggregate (cost=2499.56..2506.70 rows= width=) (actual time=30.530..43.275 rows= loops=) Group Key: t_zhld_zbajxx.c_ajbh -> Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx (cost=0.42..2497.77 rows= width=) (actual time=0.043..15.552 rows= loops=)
Index Cond: ((n_dbzt = ) AND ((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text)) -> Index Scan using t_zhld_db_pkey on t_zhld_db (cost=0.28..8.30 rows= width=) (actual time=0.009..0.011 rows= loops=)
Index Cond: (c_bh = t_zhld_ajdbxx.c_dbbh) Filter: (((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[])))
Planning time: 1.154 ms
Execution time: 127.734 ms
这一次可以看出,ajdbxx和zbajxx表做了hash semi join 消除了nestedloop,cost降到了3231.97。并且使用上了i_t_zhld_ajdbxx_m6
子查询中in的结果集有一万多条数据,尝试使用exists等价改写in,看能否有更好的结果
等价改写SQL(2)
代码语言:javascript复制等价改写:将in替换为exists:select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqlyfrom (select c_bh from db_zxzhld.t_zhld_db where n_state in (,,) and c_dbztbh='1003' )dbxx join (select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly,c_dbbh from db_zxzhld.t_zhld_ajdbxx ajdbxxwhere c_zblx='1003'
and c_dbfy='0' and c_gy = '2550' and exists (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx zbajxx where ajdbxx.c_ajbh = zbajxx.c_ajbh and n_dbzt = and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc, c_ajbh asc)dbajon dbxx.c_bh = dbaj.c_dbbh
limit offset 再次查看执行计划:
Limit (cost=1.12..2547.17 rows= width=) (actual time=0.140..0.727 rows= loops=) -> Nested Loop (cost=1.12..2547.17 rows= width=) (actual time=0.136..0.689 rows= loops=) -> Nested Loop Semi Join (cost=0.85..2538.84 rows= width=) (actual time=0.115..0.493 rows= loops=) -> Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx t2 (cost=0.42..700.28 rows= width=) (actual time=0.076..0.127 rows= loops=)
Index Cond: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text)) -> Index Scan using i_t_zhld_zbajxx_c_ajbh on t_zhld_zbajxx t3 (cost=0.42..8.40 rows= width=) (actual time=0.019..0.019 rows= loops=)
Index Cond: ((c_ajbh)::text = (t2.c_ajbh)::text) Filter: (((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text) AND (n_dbzt = )) -> Index Scan using t_zhld_db_pkey on t_zhld_db (cost=0.28..8.30 rows= width=) (actual time=0.007..0.008 rows= loops=)
Index Cond: (c_bh = t2.c_dbbh) Filter: (((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[])))
Planning time: 1.268 ms
Execution time: 0.859 ms
可以看出使用exist效果更好,最终cost 2547.17().少了t_zhld_zbajxx表的group by操作:Sort Key: t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh。(这一步是因为使用了索引中的排序)
().少了分组的操作:Group Key: t_zhld_zbajxx.c_ajbh。
第()为什么这个查询消除了t_zhld_zbajxx表的group by操作呢?
原因是exists替换了distinct的功能,一旦满足条件则立刻返回。所以使用exists的时候子查询可以直接去掉distinct。