Ribbon
简介
- Spring Cloud Ribbon也是基于Netflix Ribbon实现的一套客户端负载均衡和服务调用的工具。可配置连接超时、重试的机制,实现自定义负载均衡算法。
- GitHub Ribbon已进入维护模式,未来可能会被Spring Cloud Loadbalancer替代。
- Ribbon本地负载均衡,在调用微服务接口时候,会在注册中心上获取注册信息服务列表之后缓存到JVM本地,从而在本地实现RPC远程服务调用技术。
- 底层使用RestTemplate
- 提供的负载均衡算法有:轮询(默认),随机,根据响应时间加权
架构
Ribbon在工作时分两步
- 优先选择负载最小的注册中心
- 根据用户配置的负载均衡算法,再从注册中心获取的服务注册表中选择一个地址
负载规则
- RoundRobinRule 轮询(默认规则)
- RandomRule 随机
- RetryRule 先按照RoundRobinRule的策略获取服务,如果获取服务失败则在指定时间内会进行重
- WeightedResponseTimeRule 对RoundRobinRule的扩展,响应速度越快的实例选择权重越大,越容易被选择
- BestAvailableRule 会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
- AvailabilityFilteringRule 先过滤掉故障实例,再选择并发较小的实例
- ZoneAvoidanceRule 复合判断server所在区域的性能和server的可用性选择服务器
RoundRobinRule源码分析
代码语言:javascript复制public class RoundRobinRule extends AbstractLoadBalancerRule {
private AtomicInteger nextServerCyclicCounter;
private static final boolean AVAILABLE_ONLY_SERVERS = true;
private static final boolean ALL_SERVERS = false;
private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);
public RoundRobinRule() {
nextServerCyclicCounter = new AtomicInteger(0);
}
public RoundRobinRule(ILoadBalancer lb) {
this();
setLoadBalancer(lb);
}
public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
log.warn("no load balancer");
return null;
}
Server server = null;
int count = 0;
while (server == null && count < 10) {
List<Server> reachableServers = lb.getReachableServers();
List<Server> allServers = lb.getAllServers();
int upCount = reachableServers.size();
int serverCount = allServers.size();
if ((upCount == 0) || (serverCount == 0)) {
log.warn("No up servers available from load balancer: " lb);
return null;
}
int nextServerIndex = incrementAndGetModulo(serverCount);
server = allServers.get(nextServerIndex);
if (server == null) {
/* Transient. */
Thread.yield();
continue;
}
if (server.isAlive() && (server.isReadyToServe())) {
return (server);
}
// Next.
server = null;
}
if (count >= 10) {
log.warn("No available alive servers after 10 tries from load balancer: "
lb);
}
return server;
}
/**
* Inspired by the implementation of {@link AtomicInteger#incrementAndGet()}.
*
* @param modulo The modulo to bound the value of the counter.
* @return The next value.
*/
private int incrementAndGetModulo(int modulo) {
for (;;) {
int current = nextServerCyclicCounter.get();
int next = (current 1) % modulo;
if (nextServerCyclicCounter.compareAndSet(current, next))
return next;
}
}
@Override
public Server choose(Object key) {
return choose(getLoadBalancer(), key);
}
@Override
public void initWithNiwsConfig(IClientConfig clientConfig) {
}
}
choose(ILoadBalancer lb, Object key)
选择服务节点incrementAndGetModulo(int modulo)
获取下一个服务节点- 用上一个服务节点的下标 1后对所有服务节点数量取余,整个过程用到了
CAS
- 并没有采用:记录总访问次数,每次对所有服务节点数量取余。可避免精度溢出,轮询算法可参照这里。
- 用上一个服务节点的下标 1后对所有服务节点数量取余,整个过程用到了
替换默认负载算法
RibbonCustomRule 自定义负载算法的配置类
代码语言:javascript复制@Configuration
@ExcludeComponentScan
public class RibbonCustomRule {
@Bean
public IRule iRule() {
return new RandomRule();
}
}
OrderMain1080 启动类
代码语言:javascript复制@EnableDiscoveryClient
@EnableEurekaClient
@SpringBootApplication
@ComponentScan(excludeFilters = {@ComponentScan.Filter(type = FilterType.ANNOTATION, value = ExcludeComponentScan.class)})
@RibbonClient(name = OrderController.PAYMENT_SERVER, configuration = RibbonCustomRule.class)
public class OrderMain1080 {
public static void main(String[] args) {
ConfigurableApplicationContext applicationContext = SpringApplication.run(OrderMain1080.class, args);
}
}
@ExcludeComponentScan
防止被@ComponentScan
扫描到,否则这个配置类就会被所有的Ribbon
客户端所共享。OrderController.PAYMENT_SERVER = "CLOUD-PAYMENT-SERVICE"
服务在注册中心里的名称
Post Views: 149