elasticsearch血泪史之没禁用的_source

2022-06-29 14:59:46 浏览数 (1)

多图预警

现状

生产上某个服务使用了ElasticSearch作为检索引擎,但是偶发性出现gc明显抖动,进而导致接口响应超时

寝食难安...

分析了一下我们的es集群规模并不大 ,以下是各个索引的情况

虽然我们是单服务器多节点部署data node但是机器配置的CPUMemory都很高,在流量没有激增的情况下,出现这种GC问题,有点儿说不过去。。。

解决这个问题,中间绕了很多弯路,看到GC问题就一门心思想着优化GC参数,虽然确实也收到了一定疗效,(毕竟我们之前都是ES默认的GC参数配置)但是并没解决根本问题。最后还是运维同学帮忙分析指明了方向,茅塞顿开。

总结一句话:

查询的问题还是得从查询找起。

类似于MySQLPostgresql查询分析器explain,es也有自己的查询分析器---profile

es查询大杀器profile

profile的用法比较简单,eg

代码语言:javascript复制
curl -XGET 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "profile": true, 
  "query" : {
    "match" : { "message" : "message number" }
  }
}

只需要在任意_search请求添加一个顶级的profile参数即可。

我们选择生产上一个慢查询,profile执行如下

代码语言:javascript复制
{
  "took": 113,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "max_score": null,
    "hits":[...]
  },
  "profile": {
    "shards": [
      {
        "id": "[o2lxbK6lQ6-z2X3UDvAh8w][active_index_1][0]",
        "searches": [
          {
            "query": [
              {
                "type": "BooleanQuery",
                "description": "-RecommendTags:[1 TO 1] -InitiativeRelationUIds:[15911945 TO 15911945] -PassiveRelationUIds:[15911945 TO 15911945] #Gender:female #ActiveTime:[1637754 TO 2147483647] #Birthdate:[722864543 TO 1290858142] #AgeRangeSetting:<ranges:[28 : 28]> #IncomeRange:<ranges:[0 : 1999999]> #IncomeRangeSetting:<ranges:[300000 : 599998]> #Height:[120 TO 250] #HeightRangeSetting:<ranges:[177 : 177]> #Education:[0 TO 7] #EducationRangeSetting:<ranges:[5 : 5]> #HouseSetting:{0 1} #ConstantScore(HometownSetting: HometownSetting:120000000000) #ConstantScore(MaritalStatusSetting:0 MaritalStatusSetting:1)",
                "time_in_nanos": 12468368,
                "breakdown": {
                  "set_min_competitive_score_count": 0,
                  "match_count": 3187,
                  "shallow_advance_count": 0,
                  "set_min_competitive_score": 0,
                  "next_doc": 2306828,
                  "match": 190778,
                  "next_doc_count": 3187,
                  "score_count": 0,
                  "compute_max_score_count": 0,
                  "compute_max_score": 0,
                  "advance": 569941,
                  "advance_count": 28,
                  "score": 0,
                  "build_scorer_count": 56,
                  "create_weight": 76451,
                  "shallow_advance": 0,
                  "create_weight_count": 1,
                  "build_scorer": 9317911
                },
               ...略
              }
            ],
            "rewrite_time": 32084,
            "collector": [
              {
                "name": "SimpleFieldCollector",
                "reason": "search_top_hits",
                "time_in_nanos": 1182060
              }
            ]
          }
        ],
        "aggregations": []
      }
    ]
  }
}

上面结果咋一看比较懵,核心参数如下

  • took 表示本次查询耗时
  • id 对于每个参与查询影响的shard都将会返回一个分析报告,并由唯一的ID标识
  • query 显示对应shard上查询的详细分析内容
  • rewrite_time 每个profile都包含一个单独的累计的重写时间 (Lucene 中的所有查询都经过重写过程。查询(及其子查询)可能会被重写一次或多次,并且该过程会一直持续到查询停止更改为止。这个过程允许 Lucene 进行优化,比如去除多余的子句,替换一个查询以获得更高效的执行路径等。例如一个 Boolean → Boolean → TermQuery 可以重写为一个 TermQuery,因为在这种情况下所有的布尔值都是不必要的.)
  • collector 关于运行搜索的Lucene收集器的分析,收集器负责协调匹配文档的遍历、评分和收集。
  • aggregations 聚合分析的详细信息

此查询不存在聚合所以aggregations空,故而我们着重关注下query部分:

query部分包含了Lucene在特定分片上执行的查询树的详细计时。

其中query中的breakdown罗列出了有关低级别Lucene执行的详细计时统计信息。breakdown只是为了给你一些感知:

  • Lucene 中的哪些机器在实际消耗时间
  • 不同组件之间时间差异的大小

详细细节可以阅读官方文档(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-profile.html)

我们主要来看下time_in_nanos它表示此查询耗时12468368(~12ms)且包含了其子查询的耗时。

那么问题来了,这个耗时跟took的113ms差了100 ms,Why?

基本原理

es查询包括两个phasequery phasefetch phase, 其中 query phase 遍历所有分片,拿到 _idscorefetch phase 再根据 id 第二次查询分片获取 _source不返回_source 可以避免第二次分片内的查询

上面我们看到查询总共耗时113ms,其中query phase部分耗时12ms,那么就是fetch phase的问题,难道我们使用了_source?

检查代码发现

代码语言:javascript复制
req := esapi.SearchRequest{
    Index:          []string{"active_index"},
    Body:           strings.NewReader((*buf).String()),
    Size:           &querySize,
    TrackTotalHits: false,
     Source:         []string{"_id"},
   }

esreq请求构建初始化过程加了一行Source:[]string{_id},_id其实并不在_source中,傻乎乎跑去_source中去查,还没查到。。。

解决办法:

禁用掉_source,因为我们并不需要除了_id以外的数据。

代码语言:javascript复制
req := esapi.SearchRequest{
    Index:          []string{"active_index"},
    Body:           strings.NewReader((*buf).String()),
    Size:           &querySize,
    TrackTotalHits: false,
     Source:         []string{"false"},
   }

这么小小一个改动,优化后结果如图Orz

0 人点赞