Hadoop之MapReduce程序分析

2022-07-01 14:41:20 浏览数 (1)

摘要:Hadoop之MapReduce程序包括三个部分:Mapper,Reducer和作业执行。本文介绍和分析MapReduce程序三部分结构。 关键词:MapReduce  Mapper  Reducer  作业执行 MapReduce程序包括三个部分,分别是Mapper,Reducer和作业执行。 Mapper 一个类要充当Mapper需要继承MapReduceBase并实现Mapper接口。 Mapper接口负责数据处理阶段。它采用形式为Mapper<K1,V1,K2,V2>的Java泛型。这里的键类和值类分别实现了WritableComparable接口和Writable接口。Mapper接口只有一个map()方法,用于处理一个单独的键值对。map()方法形式如下。 public  void map(K1  key,  V1  value,  OutputCollector<K2,V2> output ,Reporter reporter  ) throws  IOException 或者 public  void map(K1  key, V1 value,  Context  context) throws  IOException, InterruptedException 该函数处理一个给定的键/值对(K1, V1),生成一个键/值对(K2, V2)的列表(该列表也可能为空)。 Hadoop提供的一些有用的Mapper实现,包括IdentityMapper,InverseMapper,RegexMapper和TokenCountMapper等。 Reducer 一个类要充当Reducer需要继承MapReduceBase并实现Reducer接口。 Reduce接口有一个reduce()方法,其形式如下。 public  void reduce(K2  key , Iterator<V2> value, OutputCollector<K3, V3>  output,  Reporter reporter) throws  IOException 或者 public  void  reduce(K2  key, Iterator<V2> value,  Context context)  throws  IOException, InterruptedException 当Reducer任务接受来自各个Mapper的输出时,它根据键/值对中的键对输入数据进行排序,并且把具有相同键的值进行归并,然后调用reduce()函数,通过迭代处理那些与指定键相关联的值,生成一个列表<K3, V3>(可能为空)。 Hadoop提供一些有用Reducer实现,包括IdentityReducer和LongSumReducer等。 作业执行 在run()方法中,通过传递一个配置好的作业给JobClient.runJob()以启动MapReduce作业。run()方法里,需要为每个作业定制基本参数,包括输入路径、输出路径、Mapper类和Reducer类。 一个典型的MapReduce程序基本模型如下。 public  class  MyJob extends  Configured implements Tool {       /*  mapreduce程序中Mapper*/       public static class MapClass extends MapReduceBase                                  implements  Mapper<Text,Text,Text,Text>  {             public void map(Text  key,  Text value,                                                    OutputCollector<Text,Text> output,                                                 Reporter  reporter) throws IOException {                                                       //添加Mapper内处理代码                                                 }       }       /*MapReduce程序中Reducer*/       public  static class  Reduce  extends  MapReduceBase        implements  Reducer<Text,Text,Text,Text>  {               public void reduce<Text key,Iterator<Text> values,               OutputCollector<Text,Text>output,Reporter reporter)             throws IOException  {                 //添加Reducer内处理代码             }       }       /*MapReduce程序中作业执行*/       public int  run(String[] args) throws Exception {         //添加作业执行代码         return 0;       } }

0 人点赞