大家好,又见面了,我是你们的朋友全栈君。
第1章 引言
随着互联网应用的广泛普及,海量数据的存储和访问成为了系统设计的瓶颈问题。对于一个大型的互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载。对于系统的稳定性和扩展性造成了极大的问题。通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式。
- 水平切分数据库:可以降低单台机器的负载,同时最大限度的降低了宕机造成的损失;
- 负载均衡策略:可以降低单台机器的访问负载,降低宕机的可能性;
- 集群方案:解决了数据库宕机带来的单点数据库不能访问的问题;
- 读写分离策略:最大限度了提高了应用中读取数据的速度和并发量;
第2章 基本原理和概念
什么是数据切分
“Shard” 这个词英文的意思是”碎片”,而作为数据库相关的技术用语,似乎最早见于大型多人在线角色扮演游戏中。”Sharding” 姑且称之为”分片”。Sharding 不是一个某个特定数据库软件附属的功能,而是在具体技术细节之上的抽象处理,是水平扩展(Scale Out,亦或横向扩展、向外扩展)的解决方案,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题。通过一系列的切分规则将数据水平分布到不同的DB或table中,在通过相应的DB路由或者table路由规则找到需要查询的具体的DB或者table,以进行Query操作。“sharding”通常是指“水平切分”,这也是本文讨论的重点。接下来举个简单的例子:我们针对一个Blog应用中的日志来说明,比如日志文章(article)表有如下字段:
面对这样的一个表,我们怎样切分呢?怎样将这样的数据分布到不同的数据库中的表中去呢?我们可以这样做,将user_id为1~10000的所有的文章信息放入DB1中的article表中,将user_id为10001~20000的所有文章信息放入DB2中的 article表中,以此类推,一直到DBn。这样一来,文章数据就很自然的被分到了各个数据库中,达到了数据切分的目的。
接下来要解决的问题就是怎样找到具体的数据库呢?其实问题也是简单明显的,既然分库的时候我们用到了区分字段user_id,那么很自然,数据库路由的过程当然还是少不了user_id的。就是我们知道了这个blog的user_id,就利用这个user_id,利用分库时候的规则,反过来定位具体的数据库。比如user_id是234,利用刚才的规则,就应该定位到DB1,假如user_id是12343,利用该才的规则,就应该定位到DB2。以此类推,利用分库的规则,反向的路由到具体的DB,这个过程我们称之为“DB路由”。
平常我们会自觉的按照范式来设计我们的数据库,考虑到数据切分的DB设计,将违背这个通常的规矩和约束。为了切分,我们不得不在数据库的表中出现冗余字段,用作区分字段或者叫做分库的标记字段。比如上面的article的例子中的user_id这样的字段(当然,刚才的例子并没有很好的体现出user_id的冗余性,因为user_id这个字段即使就是不分库,也是要出现的,算是我们捡了便宜吧)。当然冗余字段的出现并不只是在分库的场景下才出现的,在很多大型应用中,冗余也是必须的,这个涉及到高效DB的设计,本文不再赘述。
为什么要数据切分
上面对什么是数据切分做了个概要的描述和解释,读者可能会疑问,为什么需要数据切分呢?像 Oracle这样成熟稳定的数据库,足以支撑海量数据的存储与查询了?为什么还需要数据切片呢?
的确,Oracle的DB确实很成熟很稳定,但是高昂的使用费用和高端的硬件支撑不是每一个公司能支付的起的。试想一下一年几千万的使用费用和动辄上千万元的小型机作为硬件支撑,这是一般公司能支付的起的吗?即使就是能支付的起,假如有更好的方案,有更廉价且水平扩展性能更好的方案,我们为什么不选择呢?
我们知道每台机器无论配置多么好它都有自身的物理上限,所以当我们应用已经能触及或远远超出单台机器的某个上限的时候,我们惟有寻找别的机器的帮助或者继续升级的我们的硬件,但常见的方案还是横向扩展,通过添加更多的机器来共同承担压力。我们还得考虑当我们的业务逻辑不断增长,我们的机器能不能通过线性增长就能满足需求?Sharding可以轻松的将计算,存储,I/O并行分发到多台机器上,这样可以充分利用多台机器各种处理能力,同时可以避免单点失败,提供系统的可用性,进行很好的错误隔离。
综合以上因素,数据切分是很有必要的。 我们用免费的MySQL和廉价的Server甚至是PC做集群,达到小型机 大型商业DB的效果,减少大量的资金投入,降低运营成本,何乐而不为呢?所以,我们选择Sharding,拥抱Sharding。
怎么做到数据切分
数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式。一种是按照不同的表(或者Schema)来切分到不同的数据库(主机)之上,这种切可以称之为数据的垂直(纵向)切分;另外一种则是根据表中的数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上面,这种切分称之为数据的水平(横向)切分。
数据切分可以是物理上的,对数据通过一系列的切分规则将数据分布到不同的DB服务器上,通过路由规则路由访问特定的数据库,这样一来每次访问面对的就不是单台服务器了,而是N台服务器,这样就可以降低单台机器的负载压力。
数据切分也可以是数据库内的,对数据通过一系列的切分规则,将数据分布到一个数据库的不同表中,比如将article分为article_001,article_002等子表,若干个子表水平拼合有组成了逻辑上一个完整的article表,这样做的目的其实也是很简单的。举个例子说明,比如article表中现在有5000w条数据,此时我们需要在这个表中增加(insert)一条新的数据,insert完毕后,数据库会针对这张表重新建立索引,5000w行数据建立索引的系统开销还是不容忽视的。但是反过来,假如我们将这个表分成100 个table呢,从article_001一直到article_100,5000w行数据平均下来,每个子表里边就只有50万行数据,这时候我们向一张 只有50w行数据的table中insert数据后建立索引的时间就会呈数量级的下降,极大了提高了DB的运行时效率,提高了DB的并发量。当然分表的好处还不知这些,还有诸如写操作的锁操作等,都会带来很多显然的好处。
综上,分库降低了单点机器的负载;分表,提高了数据操作的效率,尤其是Write操作的效率。行文至此我们依然没有涉及到如何切分的问题。接下来,我们将对切分规则进行详尽的阐述和说明。
常见的分库、分表形式(垂直分表、垂直分库、水平分表、水平分库)
- 垂直分表:通俗的说法叫做“大表拆小表”,拆分是基于关系型数据库中的“列”(字段)进行的。通常情况,某个表中的字段比较多,可以新建立一张“扩展表”,将不经常使用或者长度较大的字段拆分出去放到“扩展表”中。拆分到多台数据库(主机)上面,这种切分称之为数据的水平(横向)切分。 优点:拆分后业务清晰,拆分规则明确;便于开发和维护;避免“跨页”的问题(MySQL、MSSQL底层都是通过“数据页”来存储的,“跨页”问题可能会造成额外的性能开销)。 缺点:部分业务表无法 join,只能通过接口方式解决,提高了系统复杂度;受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高;事务处理复杂。
- 垂直分库:基本的思路就是按照业务模块来划分出不同的数据库,而不是像早期一样将所有的数据表都放到同一个数据库中。 ps:数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈,是大型分布式系统中优化数据库架构的重要手段;由于垂直切分是按照业务的分类将表分散到不同的库,所以有些业务表会过于庞大,存在单库读写与存储瓶 颈,所以就需要水平拆分来做解决。
- 水平分表:水平分表也称为横向分表,比较容易理解,就是将表中不同的数据行按照一定规律分布到不同的数据库表中(这些表保存在同一个数据库中)。能够降低单表的数据量,一定程度上可以缓解查询性能瓶颈。但本质上这些表还保存在同一个库中,所以库级别还是会有IO瓶颈。所以,一般不建议采用这种做法。 优点:降低单表数据量,优化查询性能,提高了系统的稳定性跟负载能力; 缺点:虽然分表了,但本质上这些表还保存在同一个库中,所以库级别还是会有IO瓶颈。所以,一般不建议采用这种做法;有些业务可能还存在查询(根据指定条件查询列表)、分页、排序问题。 最常见的分表方式就是通过主键或者时间等字段进行Hash和取模后拆分。
- 水平分库:水平分库分表与上面讲到的水平分表的思想相同,唯一不同的就是将这些拆分出来的表保存在不同的数据库中。这也是很多大型互联网公司所选择的做法。 ps:某种意义上来讲,有些系统中使用的“冷热数据分离”(将一些使用较少的历史数据迁移到其他的数据库中。而在业务功能上,通常默认只提供热点数据的查询),也是类似的实践。在高并发和海量数据的场景下,分库分表能够有效缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源的瓶颈。当然,投入的硬件成本也会更高。同时,这也会带来一些复杂的技术问题和挑战(例如:跨分片的复杂查询,跨分片事务等)
切分带来的问题和解决方法
- 垂直分库切分: 跨库(跨节点)的join问题: 在拆分之前,系统中很多列表和详情页所需的数据是可以通过sql join来完成的。而拆分后,数据库可能是分布式在不同实例和不同的主机上,join将变得非常麻烦。而且基于架构规范,性能,安全性等方面考虑,一般是禁止跨库join的。那该怎么办呢?首先要考虑下垂直分库的设计问题,如果可以调整,那就优先调整。如果无法调整的情况,下面将结合以往的实际经验,总结几种常见的解决思路,并分析其适用场景。 跨库(跨节点)的join问题,几种解决思路: 1.全局表: 所谓全局表,就是有可能系统中所有模块都可能会依赖到的一些表。比较类似我们理解的“数 据 字典”。为了避免跨库join查询,我们可以将这类表在其他每个数据库中均保存一份。同时,这类数据通常也很少发生修改(甚至几乎不会),所以也不用太担心“一致性”问题。 2.字段冗余: 将一个字段同时保存在多个表中。这是一种“时间换空间”的提现,但同时带来了数据难以一致性的问题。 3.数据同步: A库中的tab_a表和B库中tbl_b有关联,可以定时将指定的表做同步。当然,同步本来会对数据库带来一定的影响,需要性能影响和数据时效性中取得一个平衡。这样来避免复杂的跨库查询。 4.系统层组装 : 在系统层面,通过调用不同模块的组件或者服务,获取到数据并进行字段拼装。说起来很容易,但实践起来可真没有这么简单,尤其是数据库设计上存在问题但又无法轻易调整的时候。具体情况通常会比较复杂。组装的时候要避免循环调用服务,循环RPC,循环查询数据库,最好一次性返回所有信息,在代码里做组装。 跨库事务(分布式事务)的问题: 什么叫分布式事务?这样理解:如果在一个事务中,操作的资源只有一个,那这个事务就是本地事务。如果操作的资源不止一个,那们就可以称为分布式事务。这里的资源指数据库的连接,JMS的连接或者其他的一些连接。 通俗的说就是,就是一个事务中,涉及到多个数据源的操作,比如从一个oracle中存一个记录,再从另一个oracle中删除那条记录。 维护所有资源上的数据一致性。 跨库事务(分布式事务)的问题的解决方法:https://mp.csdn.net/postedit/79685717 1.XA协议指的是TM(事务管理器)和RM(资源管理器)之间的接口; 2.提供回滚接口; 3.本地消息表; 4.非事务消息(MQ)
- 水平切分: 分布式全局唯一ID问题: 我们往往直接使用数据库自增特性来生成主键ID,这样确实比较简单。而在分库分表的环境中,数据分布在不同的分片上,不能再借助数据库自增长特性直接生成,否则会造成不同分片上的数据表主键会重复。简单介绍几种ID生成算法。 Twitter的Snowflake(又名“雪花算法”) UUID/GUID(一般应用程序和数据库均支持) MongoDB ObjectID(类似UUID的方式) Ticket Server(数据库生存方式,Flickr采用的就是这种方式) 其中,Twitter 的Snowflake算法生成的是64位唯一Id(由41位的timestamp 10位自定义的机器码 13位累加计数器组成)。 跨节点合并排序分页问题: 分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。 常见分片规则问题: 常见的分片策略有随机分片和连续分片这两种,当需要使用分片字段进行范围查找时,连续分片可以快速定位分片进行高效查询,大多数情况下可以有效避免跨分片查询的问题。后期如果想对整个分片集群扩容时,只需要添加节点即可,无需对其他分片的数据进行迁移。但是,连续分片也有可能存在数据热点的问题,有些节点可能会被频繁查询压力较大,热数据节点就成为了整个集群的瓶颈。而有些节点可能存的是历史数据,很少需要被查询到。随机分片其实并不是随机的,也遵循一定规则。通常,我们会采用Hash取模的方式进行分片拆分,所以有些时候也被称为离散分片。随机分片的数据相对比较均匀,不容易出现热点和并发访问的瓶颈。但是,后期分片集群扩容起来需要迁移旧的数据。使用一致性Hash算法能够很大程度的避免这个问题,所以很多中间件的分片集群都会采用一致性Hash算法。离散分片也很容易面临跨分片查询的复杂问题。 数据迁移,容量规划,扩容等问题: 很少有项目会在初期就开始考虑分片设计的,一般都是在业务高速发展面临性能和存储的瓶颈时才会提前准备。因此,不可避免的就需要考虑历史数据迁移的问题。一般做法就是通过程序先读出历史数据,然后按照指定的分片规则再将数据写入到各个分片节点中。此外,我们需要根据当前的数据量和QPS等进行容量规划,综合成本因素,推算出大概需要多少分片(一般建议单个分片上的单表数据量不要超过1000W)。如果是采用随机分片,则需要考虑后期的扩容问题,相对会比较麻烦。如果是采用的范围分片,只需要添加节点就可以自动扩容。 跨分片的函数处理: 在使用Max、Min、Sum、Count之类的函数进行统计和计算的时候,需要先在每个分片数据源上执行相应的函数处理,然后再将各个结果集进行二次处理,最终再将处理结果返回。 跨分片join问题: Join是关系型数据库中最常用的特性,但是在分片集群中,join也变得非常复杂。应该尽量避免跨分片的join查询(这种场景,比上面的跨分片分页更加复杂,而且对性能的影响很大)。通常有以下几种方式来避免: 1.全局表:全局表的概念之前在“垂直分库”时提过。基本思想一致,就是把一些类似数据字典又可能会产生join查询的表信息放到各分片中,从而避免跨分片的join。 2.ER分片:在关系型数据库中,表之间往往存在一些关联的关系。如果我们可以先确定好关联关系,并将那些存在关联关系的表记录存放在同一个分片上,那么就能很好的避免跨分片join问题。在一对多关系的情况下,我们通常会选择按照数据较多的那一方进行拆分。 3.内存计算:随着spark内存计算的兴起,理论上来讲,很多跨数据源的操作问题看起来似乎都能够得到解决。可以将数据丢给spark集群进行内存计算,最后将计算结果返回。
切分的一些原则
由于数据切分后数据 Join 的难度在此也分享一下数据切分的经验: 第一原则:能不切分尽量不要切分。 第二原则:如果要切分一定要选择合适的切分规则,提前规划好。 第三原则:数据切分尽量通过数据冗余或表分组(Table Group)来降低跨库 Join 的可能。 第四原则:由于数据库中间件对数据 Join 实现的优劣难以把握,而且实现高性能难度极大,业务读取尽量 少使用多表 Join。
水平切分的方式和规则
上文中提到,要想做到数据的水平切分,在每一个表中都要有相冗余字符作为切分依据和标记字段,通常的应用中我们选用user_id作为区分字段,基于此就有如下几种分库的方式和规则:(当然还可以有其他的方式)
(1) 号段分区
user_id为1~1000的对应DB1,1001~2000的对应DB2,以此类推;
优点:可部分迁移
缺点:数据分布不均
(2)hash取模分区(或者直接 user_id 取模)
对user_id进行hash(或者如果user_id是数值型的话直接使用user_id 的值也可),然后用一个特定的数字,比如应用中需要将一个数据库切分成4个数据库的话,我们就用4这个数字对user_id的hash值进行取模运算,也就是user_id%4,这样的话每次运算就有四种可能:结果为1的时候对应DB1;结果为2的时候对应DB2;结果为3的时候对应DB3;结果为0的时候对应DB4。这样一来就非常均匀的将数据分配到4个DB中。
代码语言:javascript复制 functikon get_hash_table($table, $userid)
{
$str = crc32($userid)
if ($str <
0) {
$hash =
"0" . $substr(abs($str),
0,
1);
}
else {
$hash = substr($str,
0,
2);
}
return $table .
"_" . $hash;
}
// 'message' 为表前缀
$table = get_hash_table(
'message',
'user18992');
优点:数据分布均匀
缺点:数据迁移的时候麻烦,不能按照机器性能分摊数据
(3)在认证库中保存数据库配置
就是建立一个DB,这个DB单独保存user_id到DB的映射关系,每次访问数据库的时候都要先查询一次这个数据库,以得到具体的DB信息,然后才能进行我们需要的查询操作。
优点:灵活性强,一对一关系
缺点:每次查询之前都要多一次查询,性能大打折扣
(4)按照日期,将不同月甚至日的数据分散到不同的库中
数据库的切分引申的 数据源管理思考
主要有两种思路: 1.客户端模式,在每个应用程序模块中配置管理自己需要的一个(或者多个)数据源,直接访问各个数据
库,在模块内完成数据的整合; 【基于应用程序层面的DDAL(分布式数据库访问层)解决 】
2.通过中间代理层来统一管理所有的数据源,后端数据库集群对前端应用程序透明;【基于中间件,又名“透明网管”去解决】
常用的中间件:mycat cobar ,结构大约如下:
过程如下:
mysql新建3个库,dn1,dn2,dn3,在linux服务器上安装mycat,配置好3个库和规则,新插入的数据会根据规则插入指定的库。
第3章 本课题研究的基本轮廓
分布式数据方案提供功能如下:
(1)提供分库规则和路由规则(RouteRule简称RR);
(2)引入集群(Group)的概念,保证数据的高可用性;
(3)引入负载均衡策略(LoadBalancePolicy简称LB);
(4)引入集群节点可用性探测机制,对单点机器的可用性进行定时的侦测,以保证LB策略的正确实施,以确保系统的高度稳定性;
(5)引入读/写分离,提高数据的查询速度;
仅仅是分库分表的数据层设计也是不够完善的,当我们采用了数据库切分方案,也就是说有N台机器组成了一个完整的DB 。如果有一台机器宕机的话,也仅仅是一个DB的N分之一的数据不能访问而已,这是我们能接受的,起码比切分之前的情况好很多了,总不至于整个DB都不能访问。
一般的应用中,这样的机器故障导致的数据无法访问是可以接受的,假设我们的系统是一个高并发的电子商务网站呢?单节点机器宕机带来的经济损失是非常严重的。也就是说,现在我们这样的方案还是存在问题的,容错性能是经不起考验的。当然了,问题总是有解决方案的。我们引入集群的概念,在此我称之为Group,也就是每一个分库的节点我们引入多台机器,每台机器保存的数据是一样的,一般情况下这多台机器分摊负载,当出现宕机情况,负载均衡器将分配负载给这台宕机的机器。这样一来,就解决了容错性的问题。
如上图所示,整个数据层有Group1,Group2,Group3三个集群组成,这三个集群就是数据水平切分的结果,当然这三个集群也就组成了一个包含完整数据的DB。每一个Group包括1个Master(当然Master也可以是多个)和 N个Slave,这些Master和Slave的数据是一致的。 比如Group1中的一个slave发生了宕机现象,那么还有两个slave是可以用的,这样的模型总是不会造成某部分数据不能访问的问题,除非整个 Group里的机器全部宕掉,但是考虑到这样的事情发生的概率非常小(除非是断电了,否则不易发生吧)。
在没有引入集群以前,我们的一次查询的过程大致如下:请求数据层,并传递必要的分库区分字段 (通常情况下是user_id)。数据层根据区分字段Route到具体的DB,在这个确定的DB内进行数据操作。
这是没有引入集群的情况,当时引入集群会 是什么样子的呢?我们的路由器上规则和策略其实只能路由到具体的Group,也就是只能路由到一个虚拟的Group,这个Group并不是某个特定的物理服务器。接下来需要做的工作就是找到具体的物理的DB服务器,以进行具体的数据操作。
基于这个环节的需求,我们引入了负载均衡器的概念 (LB),负载均衡器的职责就是定位到一台具体的DB服务器。具体的规则如下:负载均衡器会分析当前sql的读写特性,如果是写操作或者是要求实时性很强的操作的话,直接将查询负载分到Master,如果是读操作则通过负载均衡策略分配一个Slave。
我们的负载均衡器的主要研究方向也就是负载分发策略,通常情况下负载均衡包括随机负载均衡和加权负载均衡。随机负载均衡很好理解,就是从N个Slave中随机选取一个Slave。这样的随机负载均衡是不考虑机器性能的,它默认为每台机器的性能是一样的。假如真实的情况是这样的,这样做也是无可厚非的。假如实际情况并非如此呢?每个Slave的机器物理性能和配置不一样的情况,再使用随机的不考虑性能的负载均衡,是非常不科学的,这样一来会给机器性能差的机器带来不必要的高负载,甚至带来宕机的危险,同时高性能的数据库服务器也不能充分发挥其物理性能。基于此考虑从,我们引入了加权负载均衡,也就是在我们的系统内部通过一定的接口,可以给每台DB服务器分配一个权值,然后再运行时LB根据权值在集群中的比重,分配一定比例的负载给该DB服务器。当然这样的概念的引入,无疑增大了系统的复杂性和可维护性。有得必有失,我们也没有办法逃过的。
有了分库,有了集群,有了负载均衡器,是不是就万事大吉了呢? 事情远没有我们想象的那么简单。虽然有了这些东西,基本上能保证我们的数据层可以承受很大的压力,但是这样的设计并不能完全规避数据库宕机的危害。假如Group1中的slave2 宕机了,那么系统的LB并不能得知,这样的话其实是很危险的,因为LB不知道,它还会以为slave2为可用状态,所以还是会给slave2分配负载。这样一来,问题就出来了,客户端很自然的就会发生数据操作失败的错误或者异常。
这样是非常不友好的!怎样解决这样的问题呢? 我们引入集群节点的可用性探测机制 ,或者是可用性的数据推送机制。这两种机制有什么不同呢?首先说探测机制吧,顾名思义,探测即使,就是我的数据层客户端,不定时对集群中各个数据库进行可用性的尝试,实现原理就是尝试性链接,或者数据库端口的尝试性访问,都可以做到。
那数据推送机制又是什么呢?其实这个就要放在现实的应用场景中来讨论这个问题了,一般情况下应用的DB 数据库宕机的话我相信DBA肯定是知道的,这个时候DBA手动的将数据库的当前状态通过程序的方式推送到客户端,也就是分布式数据层的应用端,这个时候在更新一个本地的DB状态的列表。并告知LB,这个数据库节点不能使用,请不要给它分配负载。一个是主动的监听机制,一个是被动的被告知的机制。两者各有所长。但是都可以达到同样的效果。这样一来刚才假设的问题就不会发生了,即使就是发生了,那么发生的概率也会降到最低。
上面的文字中提到的Master和Slave ,我们并没有做太多深入的讲解。一个Group由1个Master和N个Slave组成。为什么这么做呢?其中Master负责写操作的负载,也就是说一切写的操作都在Master上进行,而读的操作则分摊到Slave上进行。这样一来的可以大大提高读取的效率。在一般的互联网应用中,经过一些数据调查得出结论,读/写的比例大概在 10:1左右 ,也就是说大量的数据操作是集中在读的操作,这也就是为什么我们会有多个Slave的原因。
但是为什么要分离读和写呢?熟悉DB的研发人员都知道,写操作涉及到锁的问题,不管是行锁还是表锁还是块锁,都是比较降低系统执行效率的事情。我们这样的分离是把写操作集中在一个节点上,而读操作其其他 的N个节点上进行,从另一个方面有效的提高了读的效率,保证了系统的高可用性。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/147137.html原文链接:https://javaforall.cn