原题:
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
题意是找到所有加起来和为target值的组合,候选数可以重复使用。这明显是一道利用回溯的题目,可以想象成深度搜索。
以题目给出的【2,3,6,7】为例。一棵树根节点有四个子节点(2,3,6,7)。每个子节点下又有不小于本子节点的所有子节点。比如子节点2下面仍然有(2,3,6,7)四个子节点,子节点3下面有(3,6,7)三个子节点。我们就在这样一棵树上进行深搜,返回的条件是经过的节点的和为target。停止的条件是返回到根节点且无下一个子节点可用。
代码语言:javascript复制public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
solve(candidates,0,target,new LinkedList<Integer>());
return ans;
}
private List<List<Integer>> ans=new LinkedList<>();
private void solve(int[] candidates,int start,int target,LinkedList<Integer> current){
if (target==0){
ans.add(copy(current));
return;
}
if (target<candidates[start]){
return;
}
else {
for (int iterator=start;iterator<candidates.length;iterator ){
if (candidates[iterator]>target){
break;
}
current.add(candidates[iterator]);
solve(candidates, iterator, target - candidates[iterator], current);
current.pollLast();
}
return;
}
}
private LinkedList<Integer> copy(LinkedList<Integer> source){
LinkedList<Integer> dest=new LinkedList<>();
for (int i:source){
dest.add(i);
}
return dest;
}
}
另一个效率更高的算法,逆向思维。
代码语言:javascript复制public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
return combinationSum(candidates, target, 0);
}
public List<List<Integer>> combinationSum(int[] candidates, int target, int start) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
Arrays.sort(candidates);
for (int i = start; i < candidates.length; i ) {
if (candidates[i] <target) {
for (List<Integer> ar : combinationSum(candidates, target - candidates[i], i)) {
ar.add(0, candidates[i]);
res.add(ar);
}
} else if (candidates[i] == target) {
List<Integer> lst = new ArrayList<>();
lst.add(candidates[i]);
res.add(lst);
} else
break;
}
return res;
}
}