翻译及二次校对:cvtutorials.com
目标
在图像处理中,由于你要每秒处理大量操作,你的代码不仅要提供正确的解决方案,而且要以最快的方式提供,这是必须的。因此,在本章中,你将学习:
- 测试代码的性能。
- 一些提高代码性能的技巧。
- 你会看到这些函数:cv.getTickCount, cv.getTickFrequency,等等。
除了OpenCV之外,Python还提供了一个模块time,这对测量执行时间很有帮助。另一个模块profile有助于获得代码的详细报告,比如代码中每个函数花了多少时间,函数被调用了多少次,等等。但是,如果你使用的是IPython,所有这些功能都以一种用户友好的方式整合在一起。我们将看到一些重要的功能,更多的细节,请查看附加资源部分的链接。
用OpenCV测量性能
cv.getTickCount函数返回一个参考事件(比如机器被打开的那一刻)到这个函数被调用的那一刻之后的时钟周期的数量。因此,如果你在函数执行之前和之后调用它,你可以得到执行一个函数所使用的时钟周期数。
cv.getTickFrequency函数返回时钟周期的频率,或每秒的时钟周期数。所以要找到以秒为单位的执行时间,你可以做以下工作。
代码语言:javascript复制e1 = cv.getTickCount()
# your code execution
e2 = cv.getTickCount()
time = (e2 - e1)/ cv.getTickFrequency()
我们将用下面的例子来证明。下面的例子应用中值滤波,其内核大小从5到49不等。不要担心结果会是什么样子--那不是我们的目标:
代码语言:javascript复制img1 = cv.imread('messi5.jpg')
e1 = cv.getTickCount()
for i in range(5,49,2):
img1 = cv.medianBlur(img1,i)
e2 = cv.getTickCount()
t = (e2 - e1)/cv.getTickFrequency()
print( t )
# Result I got is 0.521107655 seconds
你可以用时间模块做同样的事情。不使用cv.getTickCount,而使用time.time()函数。然后取这两个时间的差值。
OpenCV中的默认优化
OpenCV的许多函数都使用SSE2,AVX等进行了优化。它也包含未经优化的代码。因此,如果我们的系统支持这些功能,我们应该利用它们(几乎所有的现代处理器都支持它们)。在编译的时候,它是默认启用的。所以,如果OpenCV启用了优化代码,它就会运行优化的代码,否则就会运行未优化的代码。你可以使用cv.useOptimized()来检查它是否被启用/禁用,cv.setUseOptimized()来启用/禁用它。让我们看一个简单的例子。
代码语言:javascript复制# check if optimization is enabled
In [5]: cv.useOptimized()
Out[5]: True
In [6]: %timeit res = cv.medianBlur(img,49)
10 loops, best of 3: 34.9 ms per loop
# Disable it
In [7]: cv.setUseOptimized(False)
In [8]: cv.useOptimized()
Out[8]: False
In [9]: %timeit res = cv.medianBlur(img,49)
10 loops, best of 3: 64.1 ms per loop
正如你所看到的,优化的中值滤波比未优化的版本快2倍。如果你检查它的源代码,你可以看到中值滤波是SIMD优化的。因此,你可以用它来在你的代码顶部启用优化(记住它是默认启用的)。
在IPython中衡量性能
有时你可能需要比较两个类似操作的性能。IPython给了你一个神奇的命令timeit来执行这个任务。它将代码运行数次,以获得更准确的结果。但是,它适合于测量单行的代码。
例如,你知道下面的运算哪个更快,x=5;y=x**2,x=5;y=x*x,x=np.uint8([5]);y=x*x
,或者y=np.square(x)?我们将通过IPython shell中的timeit来找出答案。
In [10]: x = 5
In [11]: %timeit y=x**2
10000000 loops, best of 3: 73 ns per loop
In [12]: %timeit y=x*x
10000000 loops, best of 3: 58.3 ns per loop
In [15]: z = np.uint8([5])
In [17]: %timeit y=z*z
1000000 loops, best of 3: 1.25 us per loop
In [19]: %timeit y=np.square(z)
1000000 loops, best of 3: 1.16 us per loop
你可以看到,x = 5 ; y = x*x是最快的,与Numpy相比,它大约快20倍。如果你也考虑到数组的创建,它可能达到100倍的速度。(Numpy的开发者们正在解决这个问题)。
注意:Python的标量操作要比Numpy的标量操作快。所以对于包括一个或两个元素的操作,Python标量比Numpy数组更好。当数组的大小稍微大一点时,Numpy有优势。
我们将再试一个例子。这一次,我们将比较cv.countNonZero()和np.count_nonzero()对同一图像的性能:
代码语言:javascript复制In [35]: %timeit z = cv.countNonZero(img)
100000 loops, best of 3: 15.8 us per loop
In [36]: %timeit z = np.count_nonzero(img)
1000 loops, best of 3: 370 us per loop
看,OpenCV函数比Numpy函数快了近25倍。
注意:通常情况下,OpenCV函数比Numpy函数快。所以对于同样的操作,OpenCV函数是首选。但是,也可能有例外,特别是当Numpy使用视图而不是拷贝时。
更多的IPython魔法命令
还有其他一些神奇的命令来测量性能、剖析、行剖析、内存测量等等。它们都有很好的文档。所以这里只提供这些文档的链接。建议有兴趣的读者可以尝试一下。
性能优化技术
有几种技术和编码方法可以发挥Python和Numpy的最大性能。这里只指出了相关的技术和方法,并给出了重要来源的链接。这里需要注意的是,首先尝试以一种简单的方式实现算法。一旦它开始工作,对它进行剖析,找到瓶颈,并对其进行优化。
- 尽可能避免在Python中使用循环,特别是双倍/三倍循环等。它们本身就很慢。
- 尽可能地将算法/代码矢量化,因为Numpy和OpenCV是为矢量操作而优化的。
- 利用高速缓存的一致性。
- 除非有必要,否则不要对数组进行复制。尽量使用视图来代替。阵列的复制是一个昂贵的操作。
如果你的代码在做完所有这些操作后仍然很慢,或者不可避免地要使用大的循环,请使用额外的库,如Cython,使其更快。
额外的资源
- Python优化技术
- Scipy讲义--高级Numpy
- IPython中的计时和剖析