YOLOX目标检测模型Keras实现,超越Yolov5

2022-02-28 13:22:12 浏览数 (1)

论文地址 YOLOX: Exceeding YOLO Series in 2021

https://arxiv.org/abs/2107.08430

本文将YOLO检测器调整为了Anchor-Free形式并在此基础上融合了其他检测技术(比如decoupled head、label assignment SimOTA)取得了SOTA性能,比如:

  • 对于YOLO-Nano,所提方法仅需0.91M参数 1.08G FLOPs取得了25.3%AP指标,以1.8%超越了NanoDet;
  • 对于YOLOv3,所提方法将指标提升到了47.3%,以3%超越了当前最佳;
  • 具有与YOLOv4-CSP、YOLOv5-L相当的参数量,YOLOX-L取得了50.0%AP指标同事具有68.9fps推理速度(Tesla V100),指标超过YOLOv5-L 1.8%;
  • 值得一提的是,YOLOX-L凭借单模型取得了Streaming Perception(Workshop on Autonomous Driving at CVPR 2021)竞赛冠军。

性能情况

实现的内容

  • 主干特征提取网络:使用了Focus网络结构。
  • 分类回归层:Decoupled Head,在YoloX中,Yolo Head被分为了分类回归两部分,最后预测的时候才整合在一起。
  • 训练用到的小技巧:Mosaic数据增强、CIOU(原版是IOU和GIOU,CIOU效果类似,都是IOU系列的,甚至更新一些)、学习率余弦退火衰减。
  • Anchor Free:不使用先验框
  • SimOTA:为不同大小的目标动态匹配正样本。

所需环境

tensorflow-gpu==1.13.1 keras==2.1.5

小技巧的设置

在train.py文件下: 1、mosaic参数可用于控制是否实现Mosaic数据增强。 2、Cosine_scheduler可用于控制是否使用学习率余弦退火衰减。

文件下载

训练所需的权值可在百度网盘中下载。 链接: https://pan.baidu.com/s/18vaa1ehQuS4vN6xRc2Qidg 提取码: 28mx

VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分: 链接: https://pan.baidu.com/s/1YuBbBKxm2FGgTU5OfaeC5A 提取码: uack

训练步骤

a、训练VOC07 12数据集

  1. 数据集的准备 本文使用VOC格式进行训练,训练前需要下载好VOC07 12的数据集,解压后放在根目录
  2. 数据集的处理 修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。
  3. 开始网络训练 train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。
  4. 训练结果预测 训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。 model_path指向训练好的权值文件,在logs文件夹里。 classes_path指向检测类别所对应的txt。 完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

b、训练自己的数据集

  1. 数据集的准备 本文使用VOC格式进行训练,训练前需要自己制作好数据集, 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
  2. 数据集的处理 在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。 修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。 训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。 model_data/cls_classes.txt文件内容为:
代码语言:javascript复制
cat
dog
...

修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。

  1. 开始网络训练 训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。 classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改! 修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。
  2. 训练结果预测 训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。 model_path指向训练好的权值文件,在logs文件夹里。 classes_path指向检测类别所对应的txt。 完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载yolo_weights.pth,放入model_data,运行predict.py,输入
代码语言:javascript复制
img/street.jpg
  1. 在predict.py里面进行设置可以进行fps测试和video视频检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
  3. 运行predict.py,输入
代码语言:javascript复制
img/street.jpg
  1. 在predict.py里面进行设置可以进行fps测试和video视频检测。

评估步骤

a、评估VOC07 12的测试集

  1. 本文使用VOC格式进行评估。VOC07 12已经划分好了测试集,无需利用voc_annotation.py生成ImageSets文件夹下的txt。
  2. 在yolo.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
  3. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

b、评估自己的数据集

  1. 本文使用VOC格式进行评估。
  2. 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集 验证集)与测试集的比例,默认情况下 (训练集 验证集):测试集 = 9:1。train_percent用于指定(训练集 验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
  3. 利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
  4. 在yolo.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
  5. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

0 人点赞