MMsegmentation教程-Config参数解释

2022-03-04 10:42:16 浏览数 (1)

Config命名格式:

代码语言:javascript复制
{model}_{backbone}_[misc]_[gpu x batch_per_gpu]_{resolution}_{schedule}_{dataset}

以下为每一项的具体解释:

  • {xxx}是必填字段,[yyy]是可选字段。
  • {model}:型号类型等psp,deeplabv3等。
  • {backbone}:骨干类型,例如r50(ResNet-50),x101(ResNeXt-101)。
  • [misc]:杂项设置/模型的插件,例如dconv,gcb,attention,mstrain。
  • [gpu x batch_per_gpu]:8x2默认使用GPU和每个GPU的样本。
  • {schedule}:训练时间表,20ki意味着20k次迭代。
  • {dataset}:数据集cityscapes,voc12aug,ade
代码语言:javascript复制
norm_cfg = dict(type='SyncBN', requires_grad=True) # 批归一化
backbone_norm_cfg = dict(type='LN', requires_grad=True) # LayerNorm 层归一话

model = dict(
    type='EncoderDecoder', #语义分割模型类型
    pretrained='pretrain/swin_base_patch4_window7_224.pth',  # 加载ImageNet预训练的backbone,这类为swin base模型
    backbone=dict(
        type='SwinTransformer', # backone的类型
        pretrain_img_size=224,
        embed_dims=128,
        patch_size=4,
        window_size=7,
        mlp_ratio=4,
        depths=[2, 2, 18, 2],
        num_heads=[4, 8, 16, 32],
        strides=(4, 2, 2, 2),
        out_indices=(0, 1, 2, 3),
        qkv_bias=True,
        qk_scale=None,
        patch_norm=True,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.3,
        use_abs_pos_embed=False,
        act_cfg=dict(type='GELU'),
        norm_cfg=dict(type='LN', requires_grad=True)),
    decode_head=dict(
        type='UPerHead', # 解码器类型
        in_channels=[128, 256, 512, 1024], # 解码器输入通道个数
        in_index=[0, 1, 2, 3], #选择特征图的索引
        pool_scales=(1, 2, 3, 6),
        channels=512, # 解码器头的中间通道数
        dropout_ratio=0.1, #分类层的之前的dropout概率
        num_classes=150,#分割类别的数量,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,  # 用于在解码时调整大小
        loss_decode=dict( #  # 解码器损失函数的配置
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=dict( #  auxiliary_head(辅助头)的类型,
        type='FCNHead',
        in_channels=512, # 辅助头输入的通道个数
        in_index=2, # 选择特征图索引
        channels=256,# 解码器的中间通道
        num_convs=1, # FCNHead的卷积数,在auxiliary_head通常是1
        concat_input=False, # 是否将convs的输出与分类器之前的输入进行拼接
        dropout_ratio=0.1,
        num_classes=150,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='LovaszLoss', classes='present', per_image=True, reduction='mean', loss_weight=0.4)),
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))
dataset_type = 'SatelliteDataset' # 数据集类型,将用于定义数据集
data_root = 'data/sensing/jpg'  # 数据的根路径
img_norm_cfg = dict( # 图像归一化配置以对输入图像进行归一化
    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], to_rgb=True)
crop_size = (512, 512) #训练时的图像剪裁大小 
train_pipeline = [ # # 训练流水线
    dict(type='LoadImageFromFile'), # 从文件中加载训练图像
    dict(type='LoadAnnotations', reduce_zero_label=False), # 加载标签图像,False代表标签包含0
    dict(type='Resize', img_scale=(512, 256), ratio_range=(0.5, 2.0)),  # 增强通道以调整图像的大小及其注释
    dict(type='RandomCrop', crop_size=(256, 256), cat_max_ratio=0.75), # 从当前图像中随机裁剪一patch
    dict(type='RandomFlip', prob=0.5),   # 翻转图像以及概率
    dict(type='PhotoMetricDistortion'), # 通过多种光度学方法使当前图像失真
    dict(
        type='Normalize', #  标准化输入图像的增强通道
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225],
        to_rgb=True),
    dict(type='Pad', size=(256, 256), pad_val=0, seg_pad_val=255), #  将图像填充到指定大小
    dict(type='DefaultFormatBundle'),  # 默认格式捆绑包,用于收集管道中的数据
    dict(type='Collect', keys=['img', 'gt_semantic_seg']) # 决定将数据中的哪些键传递给分割器
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(512, 256),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2, #  单个GPU的批处理大小
    workers_per_gpu=4,# 
    train=dict(
        type='SatelliteDataset',
        data_root='data/sensing/jpg',
        img_dir='images/training',
        ann_dir='annotations/training',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', reduce_zero_label=False),
            dict(type='Resize', img_scale=(512, 256), ratio_range=(0.5, 2.0)),
            dict(type='RandomCrop', crop_size=(256, 256), cat_max_ratio=0.75),
            dict(type='RandomFlip', prob=0.5),
            dict(type='PhotoMetricDistortion'),
            dict(
                type='Normalize',
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
                to_rgb=True),
            dict(type='Pad', size=(256, 256), pad_val=0, seg_pad_val=255),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_semantic_seg'])
        ]),
    val=dict(
        type='SatelliteDataset',
        data_root='data/sensing/jpg',
        img_dir='images/validation',
        ann_dir='annotations/validation',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(512, 256),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[0.485, 0.456, 0.406],
                        std=[0.229, 0.224, 0.225],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='SatelliteDataset',
        data_root='data/sensing/jpg',
        img_dir='images/test',
        ann_dir='annotations/test',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(512, 256),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[0.485, 0.456, 0.406],
                        std=[0.229, 0.224, 0.225],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
log_config = dict(
    interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) # 间隔打印日志
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)] #  Workflow for runner [('train',1)]表示只有一个工作流程,名为'train'的工作流程只执行一次。
cudnn_benchmark = True #是否使用cudnn_benchmark加快速度,只适用于固定输入大小

optimizer = dict(
    type='AdamW',
    lr=6e-05,
    betas=(0.9, 0.999),
    weight_decay=0.01,
    paramwise_cfg=dict(
        custom_keys=dict(
            absolute_pos_embed=dict(decay_mult=0.0),
            relative_position_bias_table=dict(decay_mult=0.0),
            norm=dict(decay_mult=0.0))))
optimizer_config = dict()
lr_config = dict(
    policy='poly',
#  # scheduler的策略还支持Step,CosineAnnealing,Cyclic等。
    warmup='linear',
    warmup_iters=1500,
    warmup_ratio=1e-06,
    power=1.0,
    min_lr=0.0,
    by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=40000)
checkpoint_config = dict(by_epoch=False, interval=10000)
evaluation = dict(interval=10000, metric='mIoU', pre_eval=True)
work_dir = './work_dirs/swin_tiny_patch4_window7_224'
gpu_ids = range(0, 1)
auto_resume = False

0 人点赞