主成分分析PCA谱分解、奇异值分解SVD预测分析运动员表现数据和降维可视化

2022-03-05 10:58:19 浏览数 (1)

原文链接:http://tecdat.cn/?p=25067

本文描述了如何 使用R执行主成分分析 ( PCA )。您将学习如何 使用 PCA_预测_ 新的个体和变量坐标。我们还将提供 _PCA 结果_背后的理论。

在 R 中执行 PCA 有两种通用方法:

  • 谱分解 ,检查变量之间的协方差/相关性
  • 检查个体之间的协方差/相关性的_奇异值分解_

根据 R 的帮助,SVD 的数值精度稍好一些。

可视化

创建基于 ggplot2 的优雅可视化。

演示数据集

我们将使用运动员在十项全能中的表现数据集查看文末了解数据获取方式,这里使用的数据描述了运动员在两项体育赛事中的表现

数据描述: 一个数据框,包含以下13个变量的27个观测值。

X100m 一个数字向量

跳远 一个数字向量

投篮 一个数字向量

高跳 一个数字向量

X400m 数字向量

X110m.hurdle 一个数字向量

飞碟 一个数字向量

撑杆跳高 一个数字向量

绳索 数字向量

X1500米 数字向量

级别 与等级相对应的数字向量

点 一个数字向量,指定获得的点数

运动会 水平变量 Decastar OlympicG

简而言之,它包含:

  • 训练个体(第 1 到 23 行)和训练变量(第 1 到 10 列),用于执行主成分分析
  • 预测个体(第 24 至 27 行)和预测变量(第 11 至 13 列),其坐标将使用 PCA 信息和通过训练个体/变量获得的参数进行预测。

加载数据并仅提取训练的个体和变量:

代码语言:javascript复制
                       head(dec)

计算 PCA

在本节中,我们将可视化 PCA。

  • 进行可视化
  • 计算 PCA
代码语言:javascript复制
prcomp
  • 可视化 特征值 (_碎石图_)。显示每个主成分解释的方差百分比。
  • 具有相似特征的个人被归为一组。
代码语言:javascript复制
viz(res )
  • 变量图。正相关变量指向图的同一侧。负相关变量指向图表的相反两侧。
代码语言:javascript复制
vzpca(res )
  • 个体和变量的双标图
代码语言:javascript复制
fvbiplot(res )

PCA 结果

代码语言:javascript复制
# 特征值
eigva

  
# 变量的结果
coord # 坐标
contrib # 对PC的贡献
cos2 # 代表性的质量 
# 个人的结果
coord # 坐标
contrib # 对PC的贡献
cos2 # 代表性的质量

使用 PCA 进行预测

在本节中,我们将展示如何仅使用先前执行的 PCA 提供的信息来预测补充个体和变量的坐标。

预测个人

  • 数据:第 24 到 27 行和第 1 到 10 列。新数据必须包含与用于计算 PCA 的活动数据具有相同名称和顺序的列(变量)。
代码语言:javascript复制
#  预测个体的数据
in <- dec[24:27, 1:10]
  • 预测新个体数据的坐标。使用 R 基函数 predict ():
代码语言:javascript复制
predict
  • 包括预测个人在内的个人图表:
代码语言:javascript复制
# 训练个体的图谱
fvca_
# 添加预测个体
fdd(p)

个体的预测坐标可以计算如下:

  • 使用 PCA 的中心和比例对新的个人数据进行中心化和标准化
  • 通过将标准化值与主成分的特征向量(载荷)相乘来计算预测坐标。

可以使用下面的 R 代码:

代码语言:javascript复制
# 对预测个体进行标准化
ined <- scale
# 个体个体的坐标

rtaton
ird <- t(apply)

补充变量

定性/分类变量

数据集 在第 13 列包含与比赛类型相对应的 补充定性变量

定性/分类变量可用于按组为样本着色。分组变量的长度应与训练个体的数量相同。

代码语言:javascript复制
groups <- as.factor
fvnd(res.pca
             )

计算分组变量水平的坐标。给定组的坐标计算为组中个体的平均坐标。

代码语言:javascript复制
library(magrittr) # 管道函数%>%。
# 1. 单个坐标
getind(res)
# 2. 组的坐标
coord %>% >
  as_data_frame%>%
  selec%>%
  mutate%>%
  group_b %>%

定量变量

数据:11:12 栏。应与训练个体的数量相同(此处为 23)

代码语言:javascript复制
quup <- dec[1:23, 11:12]
head(quup .sup)

给定定量变量的坐标被计算为定量变量与主成分之间的相关性。

代码语言:javascript复制
# 预测坐标并计算cos2
quaord <- cor
quaos2 <- qord^2
# 变量的图形,包括补充变量
p <- fviar(reca)
fvdd(p, quord, color ="blue", geom="arrow")

PCA 结果背后的理论

变量的 PCA 结果

在这里,我们将展示如何计算变量的 PCA 结果:坐标、cos2 和贡献:

  • var.coord = 载荷 * 分量标准差
  • var.cos2 = var.coord ^ 2
  • var.contrib. 变量对给定主成分的贡献为(百分比):(var.cos2 * 100)/(成分的总 cos2)
代码语言:javascript复制
# 计算坐标
#::::::::::::::::::::::::::::::::::::::::
logs <- rotation
sdev <- sdev
vad <- t(apply)
代码语言:javascript复制
# 计算 Cos2
#::::::::::::::::::::::::::::::::::::::::
vaos2 <- vard^2
head(vars2[, 1:4])
代码语言:javascript复制
# 计算贡献
#::::::::::::::::::::::::::::::::::::::::
comos2 <- apply
cnrib <- function
var.otrb <- t(apply)
head(vaib[, 1:4])

PCA 结果

  • ind.coord = res.pca$x
  • 个人的 Cos2。两步:
  • 计算每个个体与 PCA 重心之间的平方距离:d2 = [(var1_ind_i - mean_var1)/sd_var1]^2 … [(var10_ind_i - mean_var10)/sd_var10]^2 … ..
  • 将 cos2 计算为 ind.coord^2/d2
  • 个人对主成分的贡献:100 (1 / number_of_individuals)(ind.coord^2 / comp_sdev^2)。请注意,每列所有贡献的总和为 100
代码语言:javascript复制
# 个人的坐标
#::::::::::::::::::::::::::::::::::
inod <- rpa$x
head(in.c[, 1:4])
代码语言:javascript复制
# 个人的Cos2
#:::::::::::::::::::::::::::::::::
# 1.个体与#PCA重心之间距离的平方
# PCA重心的平方
ceer<- center
scle<- scale

d <- apply(decaive,1,gnce, center, scale)
# 2. 计算cos2。每一行的总和为1
is2 <- apply(inrd, 2, cs2, d2)
head(is2[, 1:4])
代码语言:javascript复制
# 个人的贡献
#:::::::::::::::::::::::::::::::

inib <- t(apply(iord, 1, conib, 
                       sdev, nrow))
head(inib[, 1:4])

本文摘选《R语言主成分分析PCA谱分解、奇异值分解预测分析运动员表现数据和降维可视化》

0 人点赞