本文主要讲解 ClickHouse S3 Engine 的读取写入性能代码 及 数量级调优
ClickHouse 如何性能调优
一 前文
ClickHouse Lamdba
二 perf 调优
1 堆栈来源 trace_log
代码语言:sql复制SELECT
count(),
arrayStringConcat(arrayMap(x -> concat(demangle(addressToSymbol(x)), 'n ', addressToLine(x)), trace), 'n') AS sym
FROM system.trace_log
WHERE query_id = '157d5b6d-fa06-4bed-94f3-01f1d5f04e24'
GROUP BY trace
ORDER BY count() DESC
LIMIT 10
2 ClickHouse 线程
代码语言:javascript复制[root@9 ~]# ps H -o 'tid comm' $(pidof -s clickhouse-server) | awk '{print $2}' | sort | uniq -c | sort -rn
230 ChunkParser
199 QueryPipelineEx
71 Segmentator
66 BgSchPool
9 clickhouse-serv
3 TCPHandler
3 SystemLogFlush
3 Formatter
2 ExterLdrReload
2 ConfigReloader
2 Collector
3 异常堆栈
被调用多次
代码语言:javascript复制 /root/ClickHouse/src/IO/BufferBase.h:82
void DB::readIntTextImpl<unsigned int, void, (DB::ReadIntTextCheckOverflow)0>(unsigned int&, DB::ReadBuffer&)
/root/ClickHouse/src/IO/BufferBase.h:95
void DB::readIntText<(DB::ReadIntTextCheckOverflow)0, unsigned int>(unsigned int&, DB::ReadBuffer&)
/root/ClickHouse/src/IO/ReadHelpers.h:393
std::__1::enable_if<is_integer_v<unsigned int>, void>::type DB::readText<unsigned int>(unsigned int&, DB::ReadBuffer&)
/root/ClickHouse/src/IO/ReadHelpers.h:902
void DB::readCSVSimple<unsigned int>(unsigned int&, DB::ReadBuffer&)
/root/ClickHouse/src/IO/ReadHelpers.h:988
std::__1::enable_if<is_arithmetic_v<unsigned int>, void>::type DB::readCSV<unsigned int>(unsigned int&, DB::ReadBuffer&)
/root/ClickHouse/src/IO/ReadHelpers.h:994
DB::SerializationNumber<unsigned int>::deserializeTextCSV(DB::IColumn&, DB::ReadBuffer&, DB::FormatSettings const&) const
/root/ClickHouse/src/DataTypes/Serializations/SerializationNumber.cpp:99
bool DB::SerializationNullable::deserializeTextCSVImpl<bool>(DB::IColumn&, DB::ReadBuffer&, DB::FormatSettings const&, std::__1::shared_ptr<DB::ISerialization const> const&)::'lambda'(DB::IColumn&)::operator()(DB::IColumn&) const
/root/ClickHouse/src/DataTypes/Serializations/SerializationNullable.cpp:377
bool DB::safeDeserialize<bool, bool DB::SerializationNullable::deserializeTextCSVImpl<bool>(DB::IColumn&, DB::ReadBuffer&, DB::FormatSettings const&, std::__1::shared_ptr<DB::ISerialization const> const&)::'lambda'()&, bool DB::SerializationNullable::deserializeTextCSVImpl<bool>(DB::IColumn&, DB::ReadBuffer&, DB::FormatSettings const&, std::__1::shared_ptr<DB::ISerialization const> const&)::'lambda'(DB::IColumn&)&, (bool*)0>(DB::IColumn&, DB::ISerialization const&, bool DB::SerializationNullable::deserializeTextCSVImpl<bool>(DB::IColumn&, DB::ReadBuffer&, DB::FormatSettings const&, std::__1::shared_ptr<DB::ISerialization const> const&)::'lambda'(DB::IColumn&)&, (bool*)0&&)
/root/ClickHouse/src/DataTypes/Serializations/SerializationNullable.cpp:193
bool DB::SerializationNullable::deserializeTextCSVImpl<bool>(DB::IColumn&, DB::ReadBuffer&, DB::FormatSettings const&, std::__1::shared_ptr<DB::ISerialization const> const&)
/root/ClickHouse/src/DataTypes/Serializations/SerializationNullable.cpp:409
DB::CSVRowInputFormat::readField(DB::IColumn&, std::__1::shared_ptr<DB::IDataType const> const&, std::__1::shared_ptr<DB::ISerialization const> const&, bool)
/root/ClickHouse/src/Processors/Formats/Impl/CSVRowInputFormat.cpp:404
DB::CSVRowInputFormat::readRow(std::__1::vector<COW<DB::IColumn>::mutable_ptr<DB::IColumn>, std::__1::allocator<COW<DB::IColumn>::mutable_ptr<DB::IColumn> > >&, DB::RowReadExtension&)
/root/ClickHouse/src/Processors/Formats/Impl/CSVRowInputFormat.cpp:236
DB::IRowInputFormat::generate()
4 性能分析
三 优化
1 对战调用分析
2 UML 类关系及调用顺序
- 优化方案 调整 ReadFromS3 单线程读性能
3 调用堆栈
- ParallelParsingInputFormat.h
- ReadBuffer 解析
四 FileSegmentEngine
1 FileSegmentEngine Lambda
代码语言:javascript复制using FileSegmentationEngine = std::function<std::pair<bool, size_t>(
ReadBuffer & buf,
DB::Memory<Allocator<false>> & memory,
size_t min_chunk_bytes)>;
2 ParallelParsingInputFormat.h
代码语言:c 复制/// Function to segment the file. Then "parsers" will parse that segments.
FormatFactory::FileSegmentationEngine file_segmentation_engine;
3 注册
代码语言:c 复制void registerFileSegmentationEngineCSV(FormatFactory & factory)
{
auto register_func = [&](const String & format_name, bool with_names, bool with_types)
{
size_t min_rows = 1 int(with_names) int(with_types);
factory.registerFileSegmentationEngine(format_name, [min_rows](ReadBuffer & in, DB::Memory<> & memory, size_t min_chunk_size)
{
return fileSegmentationEngineCSVImpl(in, memory, min_chunk_size, min_rows);
});
};
registerWithNamesAndTypes("CSV", register_func);
}
static std::pair<bool, size_t> fileSegmentationEngineCSVImpl(ReadBuffer & in, DB::Memory<> & memory, size_t min_chunk_size, size_t min_rows)
{
char * pos = in.position();
bool quotes = false;
bool need_more_data = true;
size_t number_of_rows = 0;
while (loadAtPosition(in, memory, pos) && need_more_data)
{
else if (*pos == 'n')
{
number_of_rows;
//min_chunk_size min_rows 成为了过滤的关键
if (memory.size() static_cast<size_t>(pos - in.position()) >= min_chunk_size && number_of_rows >= min_rows)
need_more_data = false;
pos;
if (loadAtPosition(in, memory, pos) && *pos == 'r')
pos;
}
}
saveUpToPosition(in, memory, pos);
return {loadAtPosition(in, memory, pos), number_of_rows};
}
五 验收结果
初期优化后,因为使用DEBUG版本,Buffer 抽象非常高,处理非常的慢
预估单个线程 70MB/S
Debug mode
代码语言:javascript复制2022.02.16 10:22:02.465780 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 33, segment size 10485813
2022.02.16 10:22:02.467560 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 33, segment size 10485813 ,time 1 ,Start Parser!
2022.02.16 10:24:00.756938 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 65505 , time 118291
2022.02.16 10:24:24.289329 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 26287 , time 141823
2022.02.16 10:24:24.289850 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 33, segment size 10485813 ,time 141824 ,Parser Finish!
2022.02.16 10:24:24.290132 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 33 ,segment size 10485813 use time 141824
2022.02.16 10:25:18.579319 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 15, segment size 10485783
2022.02.16 10:25:18.580013 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 15, segment size 10485783 ,time 0 ,Start Parser!
2022.02.16 10:25:56.587206 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 65505 , time 38007
2022.02.16 10:26:31.826019 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 26371 , time 73246
2022.02.16 10:26:31.826507 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 15, segment size 10485783 ,time 73247 ,Parser Finish!
2022.02.16 10:26:31.826747 [ 2903129 ] {8f97a908-1ba6-4e25-911b-dbd4ac947bf9} <Trace> ParallelParsingInputFormat: Read S3 object index 15 ,segment size 10485783 use time 73247
INFO Mode
代码语言:javascript复制2022.02.16 10:25:44.211472 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 8, segment size 10485834
2022.02.16 10:25:44.211557 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 8, segment size 10485834 ,time 0 ,Start Parser!
2022.02.16 10:25:44.303112 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 65505 , time 91
2022.02.16 10:25:44.345420 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 26292 , time 133
2022.02.16 10:25:44.345469 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 8, segment size 10485834 ,time 134 ,Parser Finish!
2022.02.16 10:25:44.345490 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 8 ,segment size 10485834 use time 134
2022.02.16 10:25:44.368619 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 17, segment size 10485789
2022.02.16 10:25:44.368691 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 17, segment size 10485789 ,time 0 ,Start Parser!
2022.02.16 10:25:44.457678 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 65505 , time 89
2022.02.16 10:25:44.491163 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 26322 , time 122
2022.02.16 10:25:44.491205 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 17, segment size 10485789 ,time 122 ,Parser Finish!
2022.02.16 10:25:44.491227 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 17 ,segment size 10485789 use time 122
2022.02.16 10:25:44.513499 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 26, segment size 10485847
2022.02.16 10:25:44.513551 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 26, segment size 10485847 ,time 0 ,Start Parser!
2022.02.16 10:25:44.595114 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 65505 , time 81
2022.02.16 10:25:44.628066 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: chunk.getNumRows() 26318 , time 114
2022.02.16 10:25:44.628102 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 26, segment size 10485847 ,time 114 ,Parser Finish!
2022.02.16 10:25:44.628122 [ 323178 ] {61cbaecf-335d-4deb-baae-51f14cb153e5} <Trace> ParallelParsingInputFormat: Read S3 object index 26 ,segment size 10485847 use time 114
六 性能
1 官方测试结果 查询
2 优化后测试结果 查询
3 优化 写入
4 优化后写入
七 测试数据
1 Schema
代码语言:javascript复制CREATE TABLE lineorder
(
LO_ORDERKEY UInt32,
LO_LINENUMBER UInt8,
LO_CUSTKEY UInt32,
LO_PARTKEY UInt32,
LO_SUPPKEY UInt32,
LO_ORDERDATE Date,
LO_ORDERPRIORITY LowCardinality(String),
LO_SHIPPRIORITY UInt8,
LO_QUANTITY UInt8,
LO_EXTENDEDPRICE UInt32,
LO_ORDTOTALPRICE UInt32,
LO_DISCOUNT UInt8,
LO_REVENUE UInt32,
LO_SUPPLYCOST UInt32,
LO_TAX UInt8,
LO_COMMITDATE Date,
LO_SHIPMODE LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);
2 单表测试模型
代码语言:javascript复制CREATE TABLE default.s3_1
(
`LO_ORDERKEY` UInt32,
`LO_LINENUMBER` UInt8,
`LO_CUSTKEY` UInt32,
`LO_PARTKEY` UInt32,
`LO_SUPPKEY` UInt32,
`LO_ORDERDATE` Date,
`LO_ORDERPRIORITY` LowCardinality(String),
`LO_SHIPPRIORITY` UInt8,
`LO_QUANTITY` UInt8,
`LO_EXTENDEDPRICE` UInt32,
`LO_ORDTOTALPRICE` UInt32,
`LO_DISCOUNT` UInt8,
`LO_REVENUE` UInt32,
`LO_SUPPLYCOST` UInt32,
`LO_TAX` UInt8,
`LO_COMMITDATE` Date,
`LO_SHIPMODE` LowCardinality(String)
)
ENGINE = S3('http://xxx/insert01/s3_engine_1.csv', 'xxx', 'xxx', 'CSV')
3 多表测试模型
代码语言:javascript复制CREATE TABLE default.s3_5
(
`LO_ORDERKEY` UInt32,
`LO_LINENUMBER` UInt8,
`LO_CUSTKEY` UInt32,
`LO_PARTKEY` UInt32,
`LO_SUPPKEY` UInt32,
`LO_ORDERDATE` Date,
`LO_ORDERPRIORITY` LowCardinality(String),
`LO_SHIPPRIORITY` UInt8,
`LO_QUANTITY` UInt8,
`LO_EXTENDEDPRICE` UInt32,
`LO_ORDTOTALPRICE` UInt32,
`LO_DISCOUNT` UInt8,
`LO_REVENUE` UInt32,
`LO_SUPPLYCOST` UInt32,
`LO_TAX` UInt8,
`LO_COMMITDATE` Date,
`LO_SHIPMODE` LowCardinality(String)
)
ENGINE = S3('http://xxx/insert01/s3_engine_{1..5}.csv', 'xxx', 'xxx', 'CSV')
4 腾讯云COS 规格与限制
5 网络代码测试结果
- 左侧为优化后 网络性能 基本可以打满 COS 带宽
- 右侧为优化前 网络性能
6 不同数据量下 网络带宽测试
希望能给学习ClickHouse 的同学带来帮助!
代码不太适合公布!欢迎大家使用 腾讯云 ClickHouse ,感谢!