关于自然语言处理系列-基于gensim的简易聊天机器人

2022-03-11 14:44:03 浏览数 (2)

下载了一个微信聊天的语料库,大概11万条记录,采用问答方式,中间以“|”分割,用gensim做了个简单的检索聊天机器人,目前基本可用。还有个地方需要进一步优化,1万语料生成的模型库通过自动应答效率还可以,11万语料自动应答效率非常低,还需要进一步改进。

文本示例

代码语言:javascript复制
敢不敢说句话 | 为什么不敢,胆小鬼
那重点是什么 | 好话不分轻重!
是程序吧?你不是人 | 就你是人?

代码示例

代码语言:javascript复制
from gensim import corpora
from gensim import similarities
from gensim import models
import jieba
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

class myCorpus(object):
    def __init__(self,corpusfile,stopwordsfile='',userdictfile=''):
        self.corpusfile=corpusfile
        self.stopwordsfile=stopwordsfile
        self.userdictfile=userdictfile
        # 问题和答案字典
        self.questionanswerdict={}
        # 问题分词和答案字典
        self.questionseganswerdict = {}
        # 问题和问题分词字典
        self.questionsegdict={}
        # 问题分词列表
        self.questionseglist=[]
        self.questionlist = []
        self.corpussegmentfile='chatcorpus.out'

    def createcorpus(self):
        # 创建适合的语料
        print('-------------------------createcorpus--------------------------')
        with open(self.corpusfile, 'r', encoding='utf-8', errors='ignore') as f:
            documents= f.readlines()
        with open(self.corpussegmentfile, 'w', encoding='utf-8', errors='ignore') as f:
            for document in documents:
                documentlist=document.split('|')
                question,answer = documentlist[0].strip(),documentlist[1].strip()
                questionseg = jieba.lcut(question)
                questionsegstr = ' '.join(jieba.lcut(question)).strip()
                # 暂不做停用词处理
                # 暂不做词频过滤
                self.questionanswerdict[question] = answer
                self.questionseganswerdict[questionsegstr] = answer
                self.questionsegdict[question]=questionseg
                self.questionseglist.append(questionseg)
                self.questionlist.append(question)
                f.write(questionsegstr 'n')
        return self.questionanswerdict,self.questionlist

    def createvector(self):
        print('--------------------------createvector-------------------------')
        # 初始化语料字典
        dictionary = corpora.Dictionary(self.questionseglist)
        # -----------dictionary的相关方法和属性----------------
        # dictionary.token2id 存放的是单词-id key-value对,字典缺省按字符串排序
        # dictionary.dfs,返回tokenid->多少文档包含这个token
        # dictionary.num_docs,返回处理文档的数量
        # dictionary.num_nnz,返回整个语料库中每个文档的唯一单词数之和)
        # dictionary.filter_n_most_frequent(N) 过滤掉出现频率最高的N个单词
        # dictionary.filter_tokens(bad_ids=None, good_ids=None) 有两种用法,一种是去掉bad_id对应的词,另一种是保留good_id对应的词而去掉其他词。注意这里bad_ids和good_ids都是列表形式
        # dictionary.compacity()  在执行完前面的过滤操作以后,可能会造成单词的序号之间有空隙,这时就可以使用该函数来对词典来进行重新排序,去掉这些空隙。
        # dictionary.filter_extremes(no_below=5, no_above=0.5, keep_n=100000)
        # 1.去掉出现次数低于no_below的
        # 2.去掉出现次数高于no_above的。注意这个小数指的是百分数
        # 3.在1和2的基础上,保留出现频率前keep_n的单词
        # 存储语料字典
        dictionary.save('dictionary.dict')

    def createmodel(self):
        # 向量化
        print('--------------------------createmodel-------------------------')
        dictionary = corpora.Dictionary.load('dictionary.dict')
        corpus = [dictionary.doc2bow(text) for text in self.questionseglist]
        corpora.MmCorpus.serialize('dictionary.mm', corpus)  # store to disk, for later use

    def createtfidf(self):
        # 创建tfidf模型
        print('-------------------------createtfidf--------------------------')
        corpus = corpora.MmCorpus('dictionary.mm')
        tfidf = models.TfidfModel(corpus)
        tfidf.save("dictionary.tfidf")

    def createsimilarities(self):
        print('-------------------------createsimilarities--------------------------')
        tfidf = models.TfidfModel.load("dictionary.tfidf")
        corpus = corpora.MmCorpus('dictionary.mm')
        index = similarities.MatrixSimilarity(tfidf[corpus])
        index.save('dictionary.index')

class myQuestion(object):
    def __init__(self,corpusfile):
        # 初始化加载相关字典、模型、相似度矩阵
        print('-------------------------myQuestion--------------------------')
        self.dictionary = corpora.Dictionary.load('dictionary.dict')
        self.tfidf = models.TfidfModel.load("dictionary.tfidf")
        self.index = similarities.MatrixSimilarity.load('dictionary.index')
        questionanswer=myCorpus(corpusfile)
        self.questionanswerdict, self.questionlist=questionanswer.createcorpus()

    def creatematchdocment(self,query_document):
        # 匹配问题
        query_document = jieba.lcut(query_document.strip())
        query_bow = self.dictionary.doc2bow(query_document)
        query_tfidf=self.tfidf[query_bow]
        sims = self.index[query_tfidf]
        # 排序
        simstop = sorted(enumerate(sims), key=lambda x: x[1], reverse=True)
        # 获取索引
        rownumber=simstop[0][0]
        # 获取问题
        question= self.questionlist[rownumber]
        # 获取答案
        answer= self.questionanswerdict[question]
        return answer
        # for document_number, score in sorted(enumerate(sims), key=lambda x: x[1], reverse=True):
        #     print(document_number, score) #, self.questionseglist[document_number],self.questionlist[document_number])

if __name__ == "__main__":
    filename = 'chatcorpus.txt'
    mycorpus = myCorpus(filename)
    mycorpus.createcorpus()
    mycorpus.createvector()
    mycorpus.createmodel()
    mycorpus.createtfidf()
    mycorpus.createsimilarities()
    myquestion = myQuestion(filename)

    prompt = "问题:"
    message = ""
    while message != 'quit':
        message = input(prompt)
        print('答案:',myquestion.creatematchdocment(message))

运行结果如下:

0 人点赞