这篇文章接上一篇spark submit读写hudi,上一篇spark submit写入hudi的数据这里打算通过spark sql来进行查询
这里稍作一些基本配置
1.首先把core-site.xml和hive-site.xml拷贝到spark/conf目录下
2.配置环境变量
代码语言:javascript复制export HIVE_HOME=/Users/wangkai/apps/install/hive-2.3.8-client
export HOODIE_ENV_hive_DOT_metastore_DOT_uris="thrift://localhost:9083"
3. 执行命令
代码语言:javascript复制bin/spark-sql
--master yarn
--conf spark.sql.hive.convertMetastoreParquet=false
--jars /Users/wangkai/apps/install/hudi/0.10.0/hudi-spark-bundle_2.11-0.10.0-SNAPSHOT.jar
4.执行过程中会出现错误
错误如下:
代码语言:javascript复制Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Failed to serialize task 1, not attempting to retry it. Exception during serialization: java.io.NotSerializableException: org.apache.hadoop.fs.Path
Serialization stack:
- object not serializable (class: org.apache.hadoop.fs.Path, value: hdfs://localhost:9000/user/hive/warehouse/stock_ticks_cow)
- element of array (index: 0)
- array (class [Ljava.lang.Object;, size 1)
- field (class: scala.collection.mutable.WrappedArray$ofRef, name: array, type: class [Ljava.lang.Object;)
- object (class scala.collection.mutable.WrappedArray$ofRef, WrappedArray(hdfs://localhost:9000/user/hive/warehouse/stock_ticks_cow))
- writeObject data (class: org.apache.spark.rdd.ParallelCollectionPartition)
- object (class org.apache.spark.rdd.ParallelCollectionPartition, org.apache.spark.rdd.ParallelCollectionPartition@87d)
- field (class: org.apache.spark.scheduler.ResultTask, name: partition, type: interface org.apache.spark.Partition)
- object (class org.apache.spark.scheduler.ResultTask, ResultTask(1, 0))
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1925)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1913)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1912)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1912)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2088)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2107)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2132)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:990)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:385)
at org.apache.spark.rdd.RDD.collect(RDD.scala:989)
at org.apache.spark.api.java.JavaRDDLike$class.collect(JavaRDDLike.scala:361)
at org.apache.spark.api.java.AbstractJavaRDDLike.collect(JavaRDDLike.scala:45)
at org.apache.hudi.client.common.HoodieSparkEngineContext.map(HoodieSparkEngineContext.java:73)
at org.apache.hudi.metadata.FileSystemBackedTableMetadata.getAllPartitionPaths(FileSystemBackedTableMetadata.java:81)
at org.apache.hudi.common.fs.FSUtils.getAllPartitionPaths(FSUtils.java:285)
... 109 more
5.问题解决
翻看代码发现主要有如下几处问题:
FileSystemBackedTableMetadata
代码语言:javascript复制@Override
public List<String> getAllPartitionPaths() throws IOException {
if (assumeDatePartitioning) {
FileSystem fs = new Path(datasetBasePath).getFileSystem(hadoopConf.get());
return FSUtils.getAllPartitionFoldersThreeLevelsDown(fs, datasetBasePath);
}
List<Path> pathsToList = new LinkedList<>();
pathsToList.add(new Path(datasetBasePath));
List<String> partitionPaths = new ArrayList<>();
while (!pathsToList.isEmpty()) {
// TODO: Get the parallelism from HoodieWriteConfig
int listingParallelism = Math.min(DEFAULT_LISTING_PARALLELISM, pathsToList.size());
// List all directories in parallel
List<Pair<Path, FileStatus[]>> dirToFileListing = engineContext.map(pathsToList, path -> {
FileSystem fileSystem = path.getFileSystem(hadoopConf.get());
return Pair.of(path, fileSystem.listStatus(path));
}, listingParallelism);
pathsToList.clear();
// If the listing reveals a directory, add it to queue. If the listing reveals a hoodie partition, add it to
// the results.
dirToFileListing.forEach(p -> {
Option<FileStatus> partitionMetaFile = Option.fromJavaOptional(Arrays.stream(p.getRight()).parallel()
.filter(fs -> fs.getPath().getName().equals(HoodiePartitionMetadata.HOODIE_PARTITION_METAFILE))
.findFirst());
if (partitionMetaFile.isPresent()) {
// Is a partition.
String partitionName = FSUtils.getRelativePartitionPath(new Path(datasetBasePath), p.getLeft());
partitionPaths.add(partitionName);
} else {
// Add sub-dirs to the queue
pathsToList.addAll(Arrays.stream(p.getRight())
.filter(fs -> fs.isDirectory() && !fs.getPath().getName().equals(HoodieTableMetaClient.METAFOLDER_NAME))
.map(fs -> fs.getPath())
.collect(Collectors.toList()));
}
});
}
return partitionPaths;
}
@Override
public Map<String, FileStatus[]> getAllFilesInPartitions(List<String> partitionPaths)
throws IOException {
if (partitionPaths == null || partitionPaths.isEmpty()) {
return Collections.emptyMap();
}
int parallelism = Math.min(DEFAULT_LISTING_PARALLELISM, partitionPaths.size());
List<Pair<String, FileStatus[]>> partitionToFiles = engineContext.map(partitionPaths, partitionPathStr -> {
Path partitionPath = new Path(partitionPathStr);
FileSystem fs = partitionPath.getFileSystem(hadoopConf.get());
return Pair.of(partitionPathStr, FSUtils.getAllDataFilesInPartition(fs, partitionPath));
}, parallelism);
return partitionToFiles.stream().collect(Collectors.toMap(Pair::getLeft, Pair::getRight));
}
现修改成如下:
代码语言:javascript复制@Override
public List<String> getAllPartitionPaths() throws IOException {
if (assumeDatePartitioning) {
FileSystem fs = new Path(datasetBasePath).getFileSystem(hadoopConf.get());
return FSUtils.getAllPartitionFoldersThreeLevelsDown(fs, datasetBasePath);
}
List<Path> pathsToList = new LinkedList<>();
pathsToList.add(new Path(datasetBasePath));
List<String> partitionPaths = new ArrayList<>();
while (!pathsToList.isEmpty()) {
// TODO: Get the parallelism from HoodieWriteConfig
int listingParallelism = Math.min(DEFAULT_LISTING_PARALLELISM, pathsToList.size());
// List all directories in parallel
List<Pair<Path, FileStatus[]>> dirToFileListing = new ArrayList<>();
for (Path path : pathsToList) {
FileSystem fileSystem = path.getFileSystem(hadoopConf.get());
dirToFileListing.add(Pair.of(path, fileSystem.listStatus(path)));
}
pathsToList.clear();
// If the listing reveals a directory, add it to queue. If the listing reveals a hoodie partition, add it to
// the results.
dirToFileListing.forEach(p -> {
Option<FileStatus> partitionMetaFile = Option.fromJavaOptional(Arrays.stream(p.getRight()).parallel()
.filter(fs -> fs.getPath().getName().equals(HoodiePartitionMetadata.HOODIE_PARTITION_METAFILE))
.findFirst());
if (partitionMetaFile.isPresent()) {
// Is a partition.
String partitionName = FSUtils.getRelativePartitionPath(new Path(datasetBasePath), p.getLeft());
partitionPaths.add(partitionName);
} else {
// Add sub-dirs to the queue
pathsToList.addAll(Arrays.stream(p.getRight())
.filter(fs -> fs.isDirectory() && !fs.getPath().getName().equals(HoodieTableMetaClient.METAFOLDER_NAME))
.map(fs -> fs.getPath())
.collect(Collectors.toList()));
}
});
}
return partitionPaths;
}
@Override
public Map<String, FileStatus[]> getAllFilesInPartitions(List<String> partitionPaths)
throws IOException {
if (partitionPaths == null || partitionPaths.isEmpty()) {
return Collections.emptyMap();
}
Map<String, FileStatus[]> map = new HashMap<>();
for (String pair : partitionPaths) {
Path partitionPath = new Path(pair);
FileSystem fs = partitionPath.getFileSystem(hadoopConf.get());
map.put(pair, FSUtils.getAllDataFilesInPartition(fs, partitionPath));
}
return map;
}
重新打包
mvn clean package -DskipTests=true
重新测试
代码语言:javascript复制select * from stock_ticks_cow limit 1
会出现如下的错误
代码语言:javascript复制Failed in [select * from stock_ticks_cow limit 1]
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, localhost, executor 1): java.io.IOException: Required column is missing in data file. Col: [dt]
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.initializeInternal(VectorizedParquetRecordReader.java:292)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.initialize(VectorizedParquetRecordReader.java:132)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.apply(ParquetFileFormat.scala:418)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.apply(ParquetFileFormat.scala:352)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:124)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:177)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.scan_nextBatch_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:260)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:411)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:417)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1925)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1913)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1912)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1912)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2088)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2107)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:370)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:331)
at org.apache.spark.sql.execution.QueryExecution.hiveResultString(QueryExecution.scala:131)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver$$anonfun$run$1.apply(SparkSQLDriver.scala:64)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver$$anonfun$run$1.apply(SparkSQLDriver.scala:64)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:63)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:371)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:274)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:855)
at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:161)
at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:184)
at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)
at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:930)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:939)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
改成如下sql
代码语言:javascript复制select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow where symbol = 'GOOG';
结果如下
我们去hive中测试对比一下
结果一样