【CVPR2022】基于鲁棒区域特征生成的零样本目标检测

2022-03-29 15:10:41 浏览数 (1)

代码语言:javascript复制
来源:专知本文为论文,建议阅读5分钟首次实现了同时针对可见目标类和不可见目标类的统一目标检测模型。

黄培亮,韩军伟,程德,张鼎文. Robust Region Feature Synthesizer for Zero-Shot Object Detection, CVPR 2022.

零样本目标检旨在提升模型对训练阶段不可见目标类的检测能力。传统的零样本学习模型在该任务环境下难以为未见目标生成具有足够类内多样性的区域特征,亦或是牺牲掉部分未见目标与图像背景的可区分性。在本研究中,我们充分考虑到物体检测任务的独特性,提出利用训练图像所包含的丰富的前背景区域特征来同时保持未见目标特征的类内多样性和类间可区分性,首次实现了同时针对可见目标类和不可见目标类的统一目标检测模型,并提供了首个零样本遥感目标检测的benchmark。

https://www.zhuanzhi.ai/paper/5c255e26ac003f0e73c213e990c05d17

0 人点赞