作者 | 源代码•宸
来源丨CSDN博客
使用Mediapipe
水平镜像处理
import cvzoneimport cv2import numpy as npfrom cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0) # 0代表自己电脑的摄像头cap.set(3, 1280) # 宽cap.set(4, 720) # 高
detector = HandDetector(detectionCon=0.8, maxHands=2)
# 处理每一帧图像while True: success, img = cap.read() # 翻转图像,使自身和摄像头中的自己呈镜像关系 img = cv2.flip(img, 1) # 将手水平翻转 hands, img = detector.findHands(img) cv2.imshow("Image", img) cv2.waitKey(1)
修改代码
import cvzoneimport cv2import numpy as npfrom cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0) # 0代表自己电脑的摄像头cap.set(3, 1280) # 宽cap.set(4, 720) # 高
detector = HandDetector(detectionCon=0.8, maxHands=1)
# 处理每一帧图像while True: success, img = cap.read() # 翻转图像,使自身和摄像头中的自己呈镜像关系 img = cv2.flip(img, 1) # 将手水平翻转 hands, img = detector.findHands(img, flipType=False) # 左手是左手,右手是右手,映射正确 cv2.imshow("Image", img) cv2.waitKey(1)
问题修复完毕
观察手的信息
import cvzoneimport cv2import numpy as npfrom cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0) # 0代表自己电脑的摄像头cap.set(3, 1280) # 宽cap.set(4, 720) # 高
detector = HandDetector(detectionCon=0.8, maxHands=1)
# 处理每一帧图像while True: success, img = cap.read() # 翻转图像,使自身和摄像头中的自己呈镜像关系 img = cv2.flip(img, 1) # 将手水平翻转 hands, img = detector.findHands(img, flipType=False) # 左手是左手,右手是右手,映射正确
print(hands)
cv2.imshow("Image", img) cv2.waitKey(1)
输出结果
[{‘lmList’: [[1088, 633, 0], [1012, 655, -24], [940, 629, -32], [894, 596, -35], [875, 562, -36], [949, 504, -17], [891, 441, -16], [862, 419, -16], [838, 403, -16], [995, 480, -3], [943, 418, 8], [924, 426, 17], [920, 440, 22], [1044, 480, 8], [998, 455, 17], [987, 489, 21], [993, 513, 23], [1085, 492, 19], [1048, 477, 27], [1036, 505, 35], [1041, 528, 40]], ‘bbox’: (838, 403, 250, 252), ‘center’: (963, 529), ‘type’: ‘Left’}]
做个小蛇
import math
import cvzoneimport cv2import numpy as npfrom cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0) # 0代表自己电脑的摄像头cap.set(3, 1280) # 宽cap.set(4, 720) # 高
detector = HandDetector(detectionCon=0.8, maxHands=1)
class SnakeGameClass: def __init__(self): # 构造方法 self.points = [] # 蛇身上所有的点 self.lengths = [] # 每个点之间的长度 self.currentLength = 0 # 蛇的总长 self.allowedLength = 150 # 蛇允许的总长度 self.previousHead = 0, 0 # 第二个头结点
def update(self, imgMain, currentHead): # 实例方法
px, py = self.previousHead cx, cy = currentHead
self.points.append([cx, cy]) # 添加蛇的点列表节点 distance = math.hypot(cx - px, cy - py) # 两点之间的距离 self.lengths.append(distance) # 添加蛇的距离列表内容 self.currentLength = distance self.previousHead = cx, cy
# Draw Snake for i, point in enumerate(self.points): if i != 0: cv2.line(imgMain, self.points[i - 1], self.points[i], (0, 0, 255), 20) # 对列表最后一个点也就是蛇头画为紫色点 cv2.circle(imgMain, self.points[-1], 20, (200, 0, 200), cv2.FILLED) return imgMain
game = SnakeGameClass()
# 处理每一帧图像while True: # 不断迭代更新 success, img = cap.read() # 翻转图像,使自身和摄像头中的自己呈镜像关系 img = cv2.flip(img, 1) # 将手水平翻转 hands, img = detector.findHands(img, flipType=False) # 左手是左手,右手是右手,映射正确
if hands: lmList = hands[0]['lmList'] # hands是由N个字典组成的列表 pointIndex = lmList[8][0:2] # 只要食指指尖的x和y坐标 img = game.update(img, pointIndex)
cv2.imshow("Image", img) cv2.waitKey(1)
添加甜甜圈
import mathimport random
import cvzoneimport cv2import numpy as npfrom cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0) # 0代表自己电脑的摄像头cap.set(3, 1280) # 宽cap.set(4, 720) # 高
detector = HandDetector(detectionCon=0.8, maxHands=1)
class SnakeGameClass: def __init__(self, pathFood): # 构造方法 self.points = [] # 蛇身上所有的点 self.lengths = [] # 每个点之间的长度 self.currentLength = 0 # 蛇的总长 self.allowedLength = 150 # 蛇允许的总长度 self.previousHead = 0, 0 # 第二个头结点
self.imgFood = cv2.imread(pathFood, cv2.IMREAD_UNCHANGED) self.hFood, self.wFood, _ = self.imgFood.shape self.foodPoint = 0, 0 self.randomFoodLocation()
def randomFoodLocation(self): self.foodPoint = random.randint(100, 1000), random.randint(100, 600)
def update(self, imgMain, currentHead): # 实例方法
px, py = self.previousHead cx, cy = currentHead
self.points.append([cx, cy]) # 添加蛇的点列表节点 distance = math.hypot(cx - px, cy - py) # 两点之间的距离 self.lengths.append(distance) # 添加蛇的距离列表内容 self.currentLength = distance self.previousHead = cx, cy
# Length Reduction if self.currentLength > self.allowedLength: for i, length in enumerate(self.lengths): self.currentLength -= length self.lengths.pop(i) self.points.pop(i) if self.currentLength < self.allowedLength: break
# Draw Snake if self.points: for i, point in enumerate(self.points): if i != 0: cv2.line(imgMain, self.points[i - 1], self.points[i], (0, 0, 255), 20) # 对列表最后一个点也就是蛇头画为紫色点 cv2.circle(imgMain, self.points[-1], 20, (200, 0, 200), cv2.FILLED)
# Draw Food rx, ry = self.foodPoint imgMain = cvzone.overlayPNG(imgMain, self.imgFood, (rx - self.wFood // 2, ry - self.hFood // 2))
return imgMain
game = SnakeGameClass("donut.png")
# 处理每一帧图像while True: # 不断迭代更新 success, img = cap.read() # 翻转图像,使自身和摄像头中的自己呈镜像关系 img = cv2.flip(img, 1) # 将手水平翻转 hands, img = detector.findHands(img, flipType=False) # 左手是左手,右手是右手,映射正确
if hands: lmList = hands[0]['lmList'] # hands是由N个字典组成的列表 pointIndex = lmList[8][0:2] # 只要食指指尖的x和y坐标 img = game.update(img, pointIndex)
cv2.imshow("Image", img) cv2.waitKey(1)
donut.png
部分代码解释说明
imgMain = cvzone.overlayPNG(imgMain, self.imgFood, (rx - self.wFood // 2, ry - self.hFood // 2))
为什么不是
imgMain = cvzone.overlayPNG(imgMain, self.imgFood, (rx , ry))
那是因为,随机生成一个点后,有坐标(x,y)
增加分数机制
import mathimport random
import cvzoneimport cv2import numpy as npfrom cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0) # 0代表自己电脑的摄像头cap.set(3, 1280) # 宽cap.set(4, 720) # 高
detector = HandDetector(detectionCon=0.8, maxHands=1)
class SnakeGameClass: def __init__(self, pathFood): # 构造方法 self.points = [] # 蛇身上所有的点 self.lengths = [] # 每个点之间的长度 self.currentLength = 0 # 蛇的总长 self.allowedLength = 150 # 蛇允许的总长度 self.previousHead = 0, 0 # 第二个头结点
self.imgFood = cv2.imread(pathFood, cv2.IMREAD_UNCHANGED) self.hFood, self.wFood, _ = self.imgFood.shape self.foodPoint = 0, 0 self.randomFoodLocation()
self.score = 0
def randomFoodLocation(self): self.foodPoint = random.randint(100, 1000), random.randint(100, 600)
def update(self, imgMain, currentHead): # 实例方法
px, py = self.previousHead cx, cy = currentHead
self.points.append([cx, cy]) # 添加蛇的点列表节点 distance = math.hypot(cx - px, cy - py) # 两点之间的距离 self.lengths.append(distance) # 添加蛇的距离列表内容 self.currentLength = distance self.previousHead = cx, cy
# Length Reduction if self.currentLength > self.allowedLength: for i, length in enumerate(self.lengths): self.currentLength -= length self.lengths.pop(i) self.points.pop(i) if self.currentLength < self.allowedLength: break
# Check if snake ate the food rx, ry = self.foodPoint if rx - self.wFood // 2 < cx < rx self.wFood // 2 and ry - self.hFood // 2 < cy < ry self.hFood // 2: self.randomFoodLocation() self.allowedLength = 50 self.score = 1 print(self.score)
# Draw Snake if self.points: for i, point in enumerate(self.points): if i != 0: cv2.line(imgMain, self.points[i - 1], self.points[i], (0, 0, 255), 20) # 对列表最后一个点也就是蛇头画为紫色点 cv2.circle(imgMain, self.points[-1], 20, (200, 0, 200), cv2.FILLED)
# Draw Food
imgMain = cvzone.overlayPNG(imgMain, self.imgFood, (rx - self.wFood // 2, ry - self.hFood // 2))
return imgMain
game = SnakeGameClass("donut.png")
# 处理每一帧图像while True: # 不断迭代更新 success, img = cap.read() # 翻转图像,使自身和摄像头中的自己呈镜像关系 img = cv2.flip(img, 1) # 将手水平翻转 hands, img = detector.findHands(img, flipType=False) # 左手是左手,右手是右手,映射正确
if hands: lmList = hands[0]['lmList'] # hands是由N个字典组成的列表 pointIndex = lmList[8][0:2] # 只要食指指尖的x和y坐标 img = game.update(img, pointIndex)
cv2.imshow("Image", img) cv2.waitKey(1)
完整代码
import mathimport random
import cvzoneimport cv2import numpy as npfrom cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0) # 0代表自己电脑的摄像头cap.set(3, 1280) # 宽cap.set(4, 720) # 高
detector = HandDetector(detectionCon=0.8, maxHands=1)
class SnakeGameClass: def __init__(self, pathFood): # 构造方法 self.points = [] # 蛇身上所有的点 self.lengths = [] # 每个点之间的长度 self.currentLength = 0 # 蛇的总长 self.allowedLength = 150 # 蛇允许的总长度 self.previousHead = 0, 0 # 第二个头结点
self.imgFood = cv2.imread(pathFood, cv2.IMREAD_UNCHANGED) self.hFood, self.wFood, _ = self.imgFood.shape self.foodPoint = 0, 0 self.randomFoodLocation()
self.score = 0 self.gameOver = False
def randomFoodLocation(self): self.foodPoint = random.randint(100, 1000), random.randint(100, 600)
def update(self, imgMain, currentHead): # 实例方法
if self.gameOver: cvzone.putTextRect(imgMain, "Game Over", [300, 400], scale=7, thickness=5, offset=20) cvzone.putTextRect(imgMain, f'Your Score:{self.score}', [300, 550], scale=7, thickness=5, offset=20) else: px, py = self.previousHead cx, cy = currentHead
self.points.append([cx, cy]) # 添加蛇的点列表节点 distance = math.hypot(cx - px, cy - py) # 两点之间的距离 self.lengths.append(distance) # 添加蛇的距离列表内容 self.currentLength = distance self.previousHead = cx, cy
# Length Reduction if self.currentLength > self.allowedLength: for i, length in enumerate(self.lengths): self.currentLength -= length self.lengths.pop(i) self.points.pop(i) if self.currentLength < self.allowedLength: break
# Check if snake ate the food rx, ry = self.foodPoint if rx - self.wFood // 2 < cx < rx self.wFood // 2 and ry - self.hFood // 2 < cy < ry self.hFood // 2: self.randomFoodLocation() self.allowedLength = 50 self.score = 1 print(self.score)
# Draw Snake if self.points: for i, point in enumerate(self.points): if i != 0: cv2.line(imgMain, self.points[i - 1], self.points[i], (0, 0, 255), 20) # 对列表最后一个点也就是蛇头画为紫色点 cv2.circle(imgMain, self.points[-1], 20, (200, 0, 200), cv2.FILLED)
# Draw Food
imgMain = cvzone.overlayPNG(imgMain, self.imgFood, (rx - self.wFood // 2, ry - self.hFood // 2))
cvzone.putTextRect(imgMain, f'Your Score:{self.score}', [50, 80], scale=3, thickness=5, offset=10)
# Check for Collision pts = np.array(self.points[:-2], np.int32) pts = pts.reshape((-1, 1, 2)) # 重塑为一个行数未知但只有一列且每个元素有2个子元素的矩阵 cv2.polylines(imgMain, [pts], False, (0, 200, 0), 3) # 第三个参数是False,我们得到的是不闭合的线 minDist = cv2.pointPolygonTest(pts, (cx, cy), True) # 参数True表示输出该像素点到轮廓最近距离
if -1 <= minDist <= 1: print("Hit") self.gameOver = True self.points = [] # 蛇身上所有的点 self.lengths = [] # 每个点之间的长度 self.currentLength = 0 # 蛇的总长 self.allowedLength = 150 # 蛇允许的总长度 self.previousHead = 0, 0 # 第二个头结点 self.randomFoodLocation()
return imgMain
game = SnakeGameClass("donut.png")
# 处理每一帧图像while True: # 不断迭代更新 success, img = cap.read() # 翻转图像,使自身和摄像头中的自己呈镜像关系 img = cv2.flip(img, 1) # 将手水平翻转 hands, img = detector.findHands(img, flipType=False) # 左手是左手,右手是右手,映射正确
if hands: lmList = hands[0]['lmList'] # hands是由N个字典组成的列表 pointIndex = lmList[8][0:2] # 只要食指指尖的x和y坐标 img = game.update(img, pointIndex)
cv2.imshow("Image", img) key = cv2.waitKey(1) if key == ord('r'): game.gameOver = False