实验环境
- 系统版本:Centos 7.5
- Hadoop版本:Apache Hadoop 2.7.3
1. 简述
- Hadoop将输入数据切分成若干个输入分片(input split),并将每个split交给一个MapTask处理;
- Map Task不断的从对应的split中解析出一个个key/value,并调用map()函数处理,处理完之后根据Reduce Task个数将结果分成若干个分片(partition)写到本地磁盘;
- 同时,每个Reduce Task从每个Map Task上读取属于自己的那个partition,然后基于排序的方法将key相同的数据聚集在一起,调用reduce()函数处理,并将结果输出到文件中。
流程图如下:
2. 编写代码
代码语言:javascript复制WordMap.java
package yiyun.hadoop.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordMap extends Mapper<Object, Text, Text, IntWritable> {
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String[] words = value.toString().split(" ");
for(String word : words) {
// 每个单词出现 1 次,作为中间结果输出
context.write(new Text(word), new IntWritable(1));
}
}
}
代码语言:javascript复制WordReduce.java
package yiyun.hadoop.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
protected void reduce(Text key, Iterable<IntWritable> values)
throws IOException, InterruptedException {
int sum = 0;
for(IntWritable count : values) {
sum = sum count.get();
}
// 输出最终结果
context.write(key, new IntWritable(sum));
}
}
代码语言:javascript复制WordMain.java
package yiyun.hadoop.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordMain {
public static void main(String[] args)
throws IOException, ClassNotFoundException, InterruptedException {
if(args.length != 2 || args == null) {
System.out.println("please input current Path");
System.exit(0);
}
Configuration conf = new Configuration();
Job job = new Job(conf, WordMain.class.getSimpleName());
// 打包jar包
job.setJarByClass(WordMain.class);
// 通过job设置输入输出格式
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
// 设置输入输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 设置处理 Map/Reduce 阶段的类
job.setMapperClass(WordMap.class);
job.setReducerClass(WordReduce.class);
// 设置最终输出 key/value 的类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 提交作业
job.waitForCompletion(true);
}
}
3. 打包 jar
4. 上传用于单词计数的文本文件到hadoop
上传 test.txt 到 hadoop 根目录
代码语言:javascript复制hadoop fs -put /home/yiyun/test.txt /
查看是否上传成功
代码语言:javascript复制hadoop fs -ls /
5. 运行 jar 包
代码语言:javascript复制运行jar包,指定包名及主类名,然后指定输入路径参数和输出路径参数(该参数都是在HDFS上,且输出路径即word文件夹不能够已存在)
hadoop jar /home/yiyun/wordcount.jar yiyun.hadoop.wordcount.WordMain /test.txt /word
- 本文作者: yiyun
- 本文链接: https://moeci.com/posts/分类-大数据/mapreduce-wordcount/
- 版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!