资源|深度学习注意力机制TensorFlow 使用教程

2022-04-06 12:12:44 浏览数 (1)

【导读】本资源介绍了以下3个方面:1)如何在图像上应用CNN attention。2)神经机器翻译中的注意机制。3)在图像配图中应用attention和双随机正则化。

No.1

总体目录

No.2

Attention maps

在这节课中,我们学习深度学习模型注意图像的哪些部分。根据我们在网络中的深度,我们可以学习不同层次的注意力图。

No.3

Attention in image captioning

传统的图像字幕模型体系结构存在瓶颈问题。通常,我们使用一个预先训练的模型来提取固定的特征,这些特征被直接提供给一个RNN模型来生成标题。然而,随着时间的推移,这种表现会影响字幕的效果,因为我们把图像看作一个整体,而不是局部。注意力背后的基本思想是迫使模型为图像的不同部分分配权重,这使得字幕处理更加有效。

地址连接:

https://github.com/zaidalyafeai/AttentioNN

0 人点赞