【Python基础】reduce函数详解

2022-04-09 14:06:40 浏览数 (3)

reduce函数原本在python2中也是个内置函数,不过在python3中被移到functools模块中。

reduce函数先从列表(或序列)中取出2个元素执行指定函数,并将输出结果与第3个元素传入函数,输出结果再与第4个元素传入函数,...,以此类推,直到列表每个元素都取完。

1 reduce用法

对列表元素求和,如果不用reduce,我们一般常用的方法是for循环:

代码语言:python代码运行次数:0复制
def sum_func(arr):
    if len(arr) <= 0:
        return 0
    else:
        out = arr[0]
        for v in arr[1:]:
            out  = v
        return out

a = [1, 2, 3, 4, 5]
print(sum_func(a))

可以看到,代码量比较多,不够优雅。如果使用reduce,那么代码将非常简洁:

代码语言:python代码运行次数:0复制
from functools import reduce

a = [1, 2, 3, 4, 5]

def add(x, y): return x   y

print(reduce(add, a))

输出结果为:

代码语言:python代码运行次数:0复制
15

2 reduce与for循环性能对比

与内置函数mapfilter不一样的是,在性能方面,reduce相比较for循环来说没有优势,甚至在实际测试中

reducefor循环更慢。

代码语言:python代码运行次数:0复制
from functools import reduce
import time

def test_for(arr):
    if len(arr) <= 0:
        return 0
    out = arr[0]
    for i in arr[1:]:
        out  = i
    return out


def test_reduce(arr):
    out = reduce(lambda x, y: x   y, arr)
    return out

a = [i for i in range(100000)]
t1 = time.perf_counter()
test_for(a)
t2 = time.perf_counter()
test_reduce(a)
t3 = time.perf_counter()
print('for循环耗时:', (t2 - t1))
print('reduce耗时:', (t3 - t2))

输出结果如下:

代码语言:python代码运行次数:0复制
for循环耗时: 0.009323899999999996
reduce耗时: 0.018477400000000005

因此,如果对性能要求苛刻,建议不用reduce, 如果希望代码更优雅而不在意耗时,可以用reduce

如果您觉得本文对你有帮助,欢迎关注我【Python学习实战】,第一时间获取最新更新。每天学习一点点,每天进步一点点。

关注【Python学习实战】关注【Python学习实战】

相关文章推荐

  1. 【Python基础】内置函数filter详解
  2. 【Python基础】内置函数map详解

0 人点赞