指数加权模型EWMA预测股市多变量波动率时间序列

2022-04-14 15:06:02 浏览数 (1)

原文链接:http://tecdat.cn/?p=25872

从广义上讲,复杂的模型可以实现很高的预测准确性。

但是您的客户需要快速理解。他们没有意愿或时间去处理任何太乏味的事情,即使模型可以稍微准确一些。简单性是商业中非常重要的模型选择标准。

在多元波动率估计中,最简单的方法是使用历史协方差矩阵。但这太简单了,我们已经知道波动性是随时间变化的。您经常看到从业者使用滚动标准差来模拟随时间变化的波动率。它可能不如其他最先进的方法准确, 但它实现起来非常简单,也很容易解释。

什么是滚动窗口估计。如果我们有一个包含 5 个观察值的向量并且我们使用 2 个窗口,那么用于估计的权重向量是 [0,0,0,0.5,0.5]。更进一步的做法是对更远的过去给予少一些权重,但要对最近的观察样本给予更大的权重,比如权重向量 [0.05, 0.1, 0.15, 0.3, 0.4]。

视频Python和R用EWMA,ARIMA模型预测时间序列

http://mpvideo.qpic.cn/0b78z4aaeaaab4ak2gdf65qfbt6dalhqaaqa.f10002.mp4?dis_k=ef7a732c1231f45a576766a07396a773&dis_t=1649919775&vid=wxv_1806647691079122962&format_id=10002&support_redirect=0&mmversion=false

根据低波动率跟着低波动率走,高波动率跟着高波动率走(波动率聚类)的典型事实,这个想法完全适合于多变量波动率预测。请考虑以下情况。 (1)

我绘制几个不同 lambda 值随时间变化的相关矩阵:

代码语言:javascript复制
k <- 10 # 几年前

end<- format(Sys.Date(),"%Y-%m-%d")

start<-format(Sys.Date() - (k*365),"%Y-%m-%d")



dat0 = getSymbols

for (i in 1:l){

da0 = getSymbols(sym[i])

ret[2:n,i] 
}

EWMAplot
legend

您可以看到,如果您为最后一次观察样本分配 15% 的权重,您会得到一些不稳定的估计。仅 5% (lambda = 0.95) 的权重给出了更平滑的估计,但可能不太准确。

除了简单之外,另一个重要的优点是不需要关心可逆性,因为在每个时间点上,估计值只是两个有效的相关矩阵的加权平均数。还有,你可以将这种方法应用于任何金融工具,不管是流动的还是非流动的,这是它受欢迎的另一个原因。

代码语言:javascript复制
EWMA <-

function {

## ###输入。

## factors N x K的数字因素数据。数据是类data.frame

## N是时间长度,K是因素的数量。  

## lambda 标量。指数衰减系数在0和1之间。

## return.cor 如果是TRUE则返回EWMA相关矩阵

##输出。  



covewma = array
covf = var(factors)  # 时间=0时的无条件方差为EWMA

mfas <- apply(factors,2, mean)

for (i in 2:t.factor) {
FF 
cov.f.ewma
}

}


if(return.cor) {

cewma 
for (i in 1:dim[1]) {

corewma= covr(coewm[i, ,])

这个函数不适合用于样本外的预测。原因是我们向样本协方差矩阵收缩,而协方差矩阵是基于全样本的,在样本结束前我们还不知道。在现实的设置中,我们只能使用到我们希望预测的那一点为止的信息。随后,我改变了原始函数,加入了一个额外的参数(用于估计协方差矩阵的初始窗口长度)。然后,初始协方差矩阵的取值只使用到预测时为止的信息,标准化也是如此。修改后的新函数如下

代码语言:javascript复制
EWMAs <- function{


# 调整了样本外的协方差预测

## 输入。

##因素N x K数字因素数据。数据是类data.frame

## N是时间长度,K是因素的数量。  

## la指数衰减因子在0和1之间。

## retu 逻辑的,如果是TRUE则返回EWMA相关矩阵

##输出。  



coa = array(,c(t.cor,k.tor,k.aor))

fas <- apply

covf = var
co.ewa[(wind-1),,] = (1-lad)*FF    ada*cov.f

for (i in wind : t.factor) {

covf = var# 到t的无条件方差。


FF = (fators[i,]- mctors) %*% t(factors[i,]- mfcrs)

coma[i,,] = (1-laa)*FF    laba*coma[(i-1),,]


for (i in wn:dim) {

orma[i, , ] = covr(owma[i, ,])

本文摘选《R语言指数加权模型EWMA预测股市多变量波动率时间序列》

0 人点赞