Flink去重第一弹:MapState去重
Flink去重第二弹:SQL方式
Flink去重第三弹:HyperLogLog去重
关于hyperloglog去重优化
不得不掌握的三种BitMap
在前面提到的精确去重方案都是会保存全量的数据,但是这种方式是以牺牲存储为代价的,而hyperloglog方式虽然减少了存储但是损失了精度,那么如何能够做到精确去重又能不消耗太多的存储呢,这篇主要讲解如何使用bitmap做精确去重。
ID-mapping
在使用bitmap去重需要将去重的id转换为一串数字,但是我们去重的通常是一串包含字符的字符串例如设备ID,那么第一步需要将字符串转换为数字,首先可能想到对字符串做hash,但是hash是会存在概率冲突的,那么可以使用美团开源的leaf分布式唯一自增ID算法,也可以使用Twitter开源的snowflake分布式唯一ID雪花算法,我们选择了实现相对较为方便的snowflake算法(从网上找的),代码如下:
代码语言:javascript复制public class SnowFlake {
/**
* 起始的时间戳
*/
private final static long START_STMP = 1480166465631L;
/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATACENTER_BIT = 5;//数据中心占用的位数
/**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT DATACENTER_BIT;
private long datacenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastStmp = -1L;//上一次时间戳
public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}
/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
| datacenterId << DATACENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}
private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}
private long getNewstmp() {
return System.currentTimeMillis();
}
}
snowflake算法的实现是与机器码以及时间有关的,为了保证其高可用做了两个机器码不同的对外提供的服务。那么整个转换流程如下图:
首先会从Hbase中查询是否有UID对应的ID,如果有则直接获取,如果没有则会调用ID-Mapping服务,然后将其对应关系存储到Hbase中,最后返回ID至下游处理。
UDF化
为了方便提供业务方使用,同样需要将其封装成为UDF, 由于snowflake算法得到的是一个长整型,因此选择了Roaring64NavgabelMap作为存储对象,由于去重是按照维度来计算,所以使用UDAF,首先定义一个accumulator:
代码语言:javascript复制public class PreciseAccumulator{
private Roaring64NavigableMap bitmap;
public PreciseAccumulator(){
bitmap=new Roaring64NavigableMap();
}
public void add(long id){
bitmap.addLong(id);
}
public long getCardinality(){
return bitmap.getLongCardinality();
}
}
udaf实现
代码语言:javascript复制public class PreciseDistinct extends AggregateFunction<Long, PreciseAccumulator> {
@Override public PreciseAccumulator createAccumulator() {
return new PreciseAccumulator();
}
public void accumulate(PreciseAccumulator accumulator,long id){
accumulator.add(id);
}
@Override public Long getValue(PreciseAccumulator accumulator) {
return accumulator.getCardinality();
}
}
那么在实际使用中只需要注册udaf即可。
关于去重系列就写到这里,如果您有不同的意见或者看法,欢迎私信。
—END—