介绍

2022-04-27 09:08:42 浏览数 (1)

介绍

针对大数据组件特点归纳如下:

  • 存储:HDFS,hudi,Hbase, Kafka
  • 计算引擎:Spark,Flink
  • OLAP: Doris
  • 调度: Yarn

下面主要从架构、组件原理、业务场景等角度针对相关组件的技术要点进行总结. 主要以问题驱动.

组件技术要点

1.hudi的cow,mor区别和应用场景?

Cow:  写时复制技术就是不同进程在访问同一资源的时候,只有更新操作,才会去复制一份新的数据并更新替换,否则都是访问同一个资源  读多写少的数据,适合cow,离线批量更新场景 Mor: 新插入的数据存储在deltalog 中,定期再将delta log合并进行parquet数据文件。读取数据时,会将deltalog跟老的数据文件做merge,得到完整的数据返回 由于写入数据先写deltalog,且delta log较小,所以写入成本较低,适用实时高频更新场景

2. hdfs架构及各角色的作用,如何实现namenode 高可用?

Namenode: 管理节点,存储元数据、文件与数据块对应关系的节点,数据以fsimage和editlog存储在namenode本地磁盘

Datanode:文件系统工作节点,根据需要存储和检索数据块,定期向他们发送存储的块列表 双机热备份,standby和active, 备用namenode为活动的namenode设置周期性的检查点,判断活动namenode是否失效

3. hbase架构,如何解决写热点问题?

  • RegionServer:负责数据的读写服务,用户通过与Region server交互来实现对数据的访问
  • HBaseHMaster:负责Region的分配及数据库的创建和删除等操作
  • ZooKeeper:负责维护集群的状态(某台服务器是否在线,服务器之间数据的同步操作及master的选举等)

热点:

创建表的指定多个region,默认情况下一个表一个region

对rowkey进行散列,把多个请求写分到不同的region上,需要对key进行md5,进行散列,这样就可以把写请求分到不同的region上面去

4.kafka rebalance机制,架构及写入存储机制?

rebalance机制:

当kafka遇到如下四种情况的时候,kafka会触发Rebalance机制: 消费组成员发生了变更,比如有新的消费者加入了消费组组或者有消费者宕机 消费者无法在指定的时间之内完成消息的消费 消费组订阅的Topic发生了变化 订阅的Topic的partition发生了变化 kafka中的重要概念:

Producer: 消息生产者,向 Kafka Broker 发消息的客户端。 Consumer: 消息消费者,从 Kafka Broker 取消息的客户端。 Consumer Group:消费者组(CG),消费者组内每个消费者负责消费不同分区的数据,提高消费能力。一个分区只能由组内一个消费者消费,消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。 Broker: 一台 Kafka 机器就是一个 broker。一个集群由多个 broker 组成。一个 broker可以容纳多个 topic。 Topic: 可以理解为一个队列,topic 将消息分类,生产者和消费者面向的是同一个 topic。 Partition: 为了实现扩展性,提高并发能力,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 partition,每个 partition 是一个 有序的队列。 Replica: 副本,为实现备份的功能,保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且Kafka 仍然能够继续工作,Kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。 Leader: 每个分区多个副本的“主”副本,生产者发送数据的对象,以及消费者消费数据的对象,都是 leader。 Follower: 每个分区多个副本的“从”副本,实时从 leader 中同步数据,保持和 leader数据的同步。leader 发生故障时,某个 follower 还会成为新的 leader。 offset:消费者消费的位置信息,监控数据消费到什么位置,当消费者挂掉再重新恢复的时候,可以从消费位置继续消费。 Zookeeper: Kafka 集群能够正常工作,需要依赖于 zookeeper,zookeeper 帮助 Kafka存储和管理集群信息。 写入存储机制:

由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据定位效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment,每个 segment 对应两个文件:“.index” 索引文件和 “.log” 数据文件。这些文件位于同一文件下,该文件夹的命名规则为:topic 名-分区号。例如,first 这个 topic 有三分分区,则其对应的文件夹为 first-0,first-1,first-2。

代码语言:javascript复制
 ls/root/data/kafka/first-0

00000000000000009014.index   
00000000000000009014.log
00000000000000009014.timeindex
00000000000000009014.snapshot
leader-epoch-checkpoint

".index”文件存储大量的索引信息,“.log” 文件存储大量的数据,索引文件中的元数据指向对应数据文件中 message 的物理偏移量。

5.spark宽依赖,窄依赖,数据倾斜问题解决方案?

宽依赖:是指1个父RDD分区对应多个子RDD的分区

窄依赖:是指一个或多个父RDD分区对应一个子RDD分区

宽依赖会产生shuffle,会跨网络拉取数据; 窄依赖在一个节点内就可以完成转换。 数据倾斜解决方案:

  1. 针对hive数据分布不均匀,Hive ETL 预处理数据
  2. 过滤少数导致数据倾斜的key
  3. 提高shuffle操作的并行度
  4. 双重聚合,局部聚合先给每个key都打上一个随机数,再全局聚合
  5. 将reduce join转为map join, BroadCast filter(或者map)
  6. 采样倾斜key分拆join操作, 将两次join的结果union合并起来,就是join的结果

6.flink状态存储,架构,如何实现精确一次语义?

Flink提供了三种开箱即用的状态存储方式:

  1. MemoryStateBackend 内存存储
  2. FsStateBackend 文件系统存储
  3. RocksDBStateBackend RocksDB存储

如果没有特殊配置,系统默认使用内存存储方式 架构: JobManager:     JobManager具有许多与协调 Flink 应用程序的分布式执行有关的职责:它决定何时调度下一个 task(或一组 task)、对完成的 task 或执行失败做出反应、协调checkpoint、并且协调从失败中恢复等等 TaskManagers:     TaskManager(也称为worker)执行作业流的 task,并且缓存和交换数据流 精确一次语义保证: source端:  Flink Kafka Source 负责保存 Kafka 消费 offset, Chckpoint成功时 Flink 负责提交这些写入 sink端: 从 Source端开始,每个内部的 transform 任务遇到 checkpoint barrier(检查点分界线)时,都会把状态存到 Checkpoint 里,   数据处理完毕到 Sink 端时,Sink 任务首先把数据写入外部 Kafka,这些数据都属于预提交的事务(还不能被消费) 当所有算子任务的快照完成, 此时 Pre-commit 预提交阶段才算完成。才正式到两阶段提交协议的第二个阶段:commit 阶段。该阶段中JobManager 会为应用中每个 Operator 发起 Checkpoint 已完成的回调逻辑, 当 Sink任务收到确认通知,就会正式提交之前的事务,Kafka 中未确认的数据就改为“已确认”,数据就真正可以被消费了

7.doris架构设计,如何实现查询计算较快?

架构: FE: 主要负责查询的编译,分发和元数据管理(基于内存,类似HDFS NN) BE: 主要负责查询的执行和存储系统 查询计算快原因:  1. MPP架构  2. 列式存储

8.yarn调度算法有哪些,以及调度过程?

调度算法:

  1. 先进先出调度器(FIFO)    单队列,根据提交作业的先后顺序,先到先得。
  1. 容量调度器
  1. 公平调度器

容量调度器:优先选择资源利用率低的队列; 公平调度器:优先选择对资源缺额比例大的。

9.flink作业提交流程?

Yarn-session: 应用模式与单作业模式的提交流程非常相似,只是初始提交给Yarn资源管理器的不再是具体的作业,而是整个应用。一个应用中可能包含了多个作业,这些作业都在Flink集群中启动各自对应的JobMaster。

Per-job:  与会话模式不同的是JobManager的启动方式,以及省去了分发器。作业提交给JobMaster之后的步骤是一样的

参考

  1. 列式存储: https://juejin.cn/post/7080504990900420644
  2. Yarn调度器和调度算法(FIFO、容量调度器 与 公平调度器):https://blog.csdn.net/FunnyPrince_/article/details/120244552
  3. Flink作业提交流程(Yarn集群模式:  https://blog.csdn.net/FlatTiger/article/details/124195400

0 人点赞