基于PushGateway+Prometheus+Grafana构建Flink实时监控体系

2022-04-27 09:14:58 浏览数 (1)

整体架构图如下:

  • Flink App: 通过report 将数据发出去metric信息
  • Pushgateway: Prometheus 生态中一个重要工具
  • Prometheus: 一套开源的系统监控报警框架 (Prometheus 入门与实践)
  • Grafana: 一个跨平台的开源的度量分析和可视化工具,可以通过将采集的数据查询然后可视化的展示,并及时通知(可视化工具Grafana:简介及安装)
  • Node_exporter:跟Pushgateway一样是Prometheus 的组件,采集到主机的运行指标如CPU, 内存,磁盘等信息

本文主要介绍将flink任务运行的metric发送到Prometheus,通过grafana报表工具展示。

1.监控的意义

flink流式任务在实时性稳定性方面都有一定的要求,通过Prometheus 采集flink集群的metric,指定一些指标就可以对其进行监控告警。从而能够让开发人员快速反应,及时处理线上问题。

2.Prometheus 简介

Prometheus是一个开源的监控和报警系统。

https://prometheus.io/docs/introduction/overview/

2.1 特性
  • 多维度的数据模型(通过指标名称和标签键值对标识)
  • 灵活的查询语言
  • 单机工作模式,不依赖于分布式存储
  • 通过pull模式(HTTP)收集监控数据
  • 通过使用中间件可以支持push监控数据到prometheus
  • 通过服务发现或者静态配置发现目标(监控数据源)
  • 支持多模式的画图和仪表盘
2.2组件

Prometheus生态系统包含很多组件(大多是都是可选择的)

  • Prometheus server(抓取、存储时间序列数据)
  • client libraries(帮助应用支持prometheus数据采集)
  • push gateway(支持短生命周期的jobs,接收push的监控数据)(prometheus原生支持pull工作模式,为了兼容push工作模式)
  • exporters(用于支持开源服务的监控数据采集,比如:HAProxy、StatsD、Graphite等)(也就是agent)
  • alertmanager(处理警报)
2.3架构

下面这张图展示了prometheus的建构和prometheus系统可能需要到的组件:

3 flink集成prometheus

3.1 flink配置

详细配置参考

https://ci.apache.org/projects/flink/flink-docs-stable/monitoring/metrics.html#cpu

进入flink目录:

拷贝 opt目录下的flink-metrics-prometheus-1.7.2.jar 到lib目录。

编辑conf/flink-conf.yml

代码语言:javascript复制
metrics.reporter.promgateway.class: org.apache.flink.metrics.prometheus.PrometheusPushGatewayReporter
metrics.reporter.promgateway.host: test01.cdh6.local
metrics.reporter.promgateway.port: 9091
metrics.reporter.promgateway.jobName: myJob
metrics.reporter.promgateway.randomJobNameSuffix: true
metrics.reporter.promgateway.deleteOnShutdown: false
3.2 pushgateway安装

参考 https://github.com/prometheus/pushgateway

下载:https://prometheus.io/download/ wget https://github.com/prometheus/pushgateway/releases/download/v0.9.1/pushgateway-0.9.1.linux-amd64.tar.gz

解压:tar -zxvf pushgateway-0.9.1.linux-amd64.tar.gz

启动:./pushgateway &

访问 http://localhost:9091/#

3.3 node_exporter安装

下载:https://prometheus.io/download/ wget https://github.com/prometheus/node_exporter/releases/download/v0.18.1/node_exporter-0.18.1.linux-amd64.tar.gz

解压:tar -zxvf pushgateway-0.9.1.linux-amd64.tar.gz

启动:./node_exporter &

查看进程 netstat -apn | grep -E '9091|3000|9090|9100'

访问url:http://192.168.91.132:9100/metrics

效果如下:

这些都是收集到数据,有了它就可以做数据展示了

3.4 prometheus安装

下载:

wget https://github.com/prometheus/prometheus/releases/download/v2.12.0/prometheus-2.12.0.linux-amd64.tar.gz

本例prometheus和pushgateway安装到同一机器上

编写prometheus.yml,注意:严格按照.yml文件的编写格式,每行要缩进,否则启动报错!

代码语言:javascript复制
scrape_configs:
  - job_name: 'prometheus'
    static_configs:
      - targets: ['localhost:9090']
        labels:
          instance: 'prometheus'
  - job_name: 'linux'
    static_configs:
      - targets: ['localhost:9100']
        labels:
          instance: 'localhost'
  - job_name: 'pushgateway'
    static_configs:
      - targets: ['localhost:9091']
        labels:
          instance: 'pushgateway'
3.5 启动
代码语言:javascript复制
./prometheus --config.file=prometheus.yml

查看进程

netstat -apn | grep -E '9091|3000|9090|9100'

这个9091端口就是flink-conf.yml对应的metrics.reporter.promgateway.port: 9091

flink会把一些metric push到9091端口上,然后prometheus采集。

查看 prometheus:ip:9090/targets

如果state 不是 UP 的,等一会就起来了

4.效果

启动flink集群:

.bin/start-cluster.sh

访问:

http://localhost:9090

5.grafana安装

下载:

wget https://dl.grafana.com/oss/release/grafana-6.3.6.linux-amd64.tar.gz

解压:

tar -zxvf grafana-6.3.6.linux-amd64.tar.gz

启动:

./bin/grafana-server web &

查看Grafana:

默认用户名密码 :amin/admin.

5.1 启动一个Flink Job

flink run -m yarn-cluster -ynm LateDataProcess -yn 1 -c com.venn.stream.api.sideoutput.lateDataProcess.LateDataProcess jar/flinkDemo-1.0.jar

查看任务webUI:

PS:任务已经跑了一段时间了

6. Grafana 中配置Flink监控

由于上面一句配置好Flink report、 pushgateway、prometheus,并且在Grafana中已经添加了prometheus 数据源,所以Grafana中会自动获取到 flink job的metrics 。

Grafana 首页,点击New dashboard,创建一个新的dashboard.

选中之后,即会出现对应的监控指标

至此,Flink 的metrics 的指标展示在Grafana 中了

flink 指标对应的指标名比较长,可以在Legend 中配置显示内容,在{undefined{key}} 将key换成对应需要展示的字段即可,如:{undefined{job_name}},{undefined{operator_name}}

对应显示如下:

总结

整体Flink metrics数据流转的流程是:

flink metric -> pushgateway -> prometheus ->grafana

0 人点赞