2022-04-27 11:00:48
浏览数 (2)
中学时学习了三角函数,下面这类图象天天看也没啥特别感觉,但是对于数学大咖而言就不一样了:
傅里叶大神看到这些图象后,提出了一个重要思想:任何一个周期性的函数,都可以用一系列三角函数叠加模拟出来,比如:
f(x) = sin(x) frac{sin(3x)}{3} frac{sin(5x)}{5} frac{sin(7x)}{7} frac{sin(9x)}{9}... tag{1}
叠加起来效果如下,得到了一个"方波":
begin{aligned}
f(t) &= sum_{n=0}^{infty} left [ a_n cos(n t) b_n sin(n t) right ] \\
&= a_0 a_1cos( t) b_1sin( t) a_2cos(2 t) b_2sin(2 t) ... a_ncos(n t) b_nsin(n t) ...
end{aligned}
tag{2}
这里面的an,bn系数怎么求呢?别急,先回忆几个中学学过的三角函数积化和差公式
begin{aligned}
sin alpha cdot cos beta &= {1 over 2} [sin(alpha beta) sin(alpha - beta)] \ \
cosalpha cdot sinbeta &= frac{1}{2}[sin(alpha beta)-sin(alpha-beta)] \ \
sin alpha cdot sin beta &= -{1 over 2} [cos(alpha beta) - cos(alpha-beta)] \ \
cosalpha cdot cosbeta &= frac{1}{2}[cos(alpha beta) cos(alpha-beta)] \ \
sin^2alpha &= frac{1-cos2alpha}{2} \ \
cos^2alpha &= frac{1 cos2alpha}{2}
end{aligned} tag{3}
再回忆2个大学数学中的三角函数积分公式
begin{aligned}
int sinxdx &= -cosx c \ \
int cosxdx &= sinx c
end{aligned} tag{4}
有了上面这些基本公式,先来证明几个恒等式 :
begin{aligned}
int_{0}^{2pi}sin(mt)dt &=0 , (m ne 0)
end{aligned} tag{a}
begin{aligned}
int_{0}^{2pi}cos(mt)dt &=0,(m ne 0) \
end{aligned} tag{b}
begin{aligned}
int_{0}^{2pi}sin(mt) cdot cos(nt)dt &=0,(m ne n , m ne -n) \
end{aligned} tag{c}
begin{aligned}
int_{0}^{2pi}cos(mt) cdot cos(nt)dt &=0,(m ne n , m ne -n) \
end{aligned} tag{d}
begin{aligned}
int_{0}^{2pi}sin(mt) cdot sin(nt)dt &=0,(m ne n , m ne -n) \
end{aligned} tag{e}
begin{aligned}
int_{0}^{2pi}sin^2(mt) dt &=pi,(m ne 0) \
end{aligned} tag{f}
begin{aligned}
int_{0}^{2pi}cos^2(mt)dt &=pi,(m ne 0) \
end{aligned} tag{g}
证明过程也不复杂,比如(a)式:
begin{aligned}
int_{0}^{2pi}sin(mt)dt
&= frac{1}{m}int_{0}^{2pi}sin(mt)d(mt) \\
&= -frac{1}{m} cos(mt)|_0^{2pi} //根据积分公式(4)\\
&= -frac{1}{m}[cos(2mpi)-cos(0)] //牛顿-莱布尼茨公式展开\ \
&= -frac{1}{m} cdot 0 \\
&= 0 ,(mneq0)
end{aligned}
(b)式的证明过程类似,留给同学们自己去练习。(c)、(d)、(e)式的证明过程也是类似的,以(c)式为例:
begin{aligned}
int_{0}^{2pi}sin(mt) cdot cos(nt)dt
&= frac{1}{2}int_{0}^{2pi}[sin(m n) sin(m-n)]dt //根据公式(3)\\
&= frac{1}{2}int_{0}^{2pi}sin(m n)dt frac{1}{2}int_0^{2pi}sin(m-n)dt \\
&= 0-0 ,( [m n]ne0 ,[m-n]ne0) //根据(a)式 \\
&=0
end{aligned}
(f)、(g)式的证明同样类似,以(f)式为例:
begin{aligned}
int_{0}^{2pi}sin^2(mt) dt
&= frac{1}{2}int_0^{2pi} [1-cos(2m)]dt \\
&= frac{1}{2}int_0^{2pi} dt-frac{1}{2}int_0^{2pi}cos(2m)dt \\
&= frac{1}{2}t|_0^{2pi} \\
&= frac{1}{2}(2pi-0) \\
&= pi
end{aligned}
傅里叶级数系数的求解: 对(2)二边求积分:
begin{aligned}
int_{0}^{2pi}f(t)dt &= int_{0}^{2pi}sum_{n=0}^{infty} left [ a_n cos(n t) b_n sin(n t) right ]dt \\
&=int_{0}^{2pi}a_0dt
int_{0}^{2pi}a_1cos(t)dt
int_{0}^{2pi}b_1sin(t)dt ...
int_{0}^{2pi}a_ncos(nt)dt
int_{0}^{2pi}b_nsin(nt)dt ... \\
&=a_0int_{0}^{2pi}dt
a_1int_{0}^{2pi}cos(t)dt
b_1int_{0}^{2pi}sin(t)dt ...
a_nint_{0}^{2pi}cos(nt)dt
b_nint_{0}^{2pi}sin(nt)dt ... \\
&=a_0|^{2pi} _0 0 0 ... //注:根据上面的恒等式(a)(b) \\
&=a_0 cdot 2pi - a_0 cdot 0 \\
&=2pi cdot a_0 \
end{aligned}
begin{aligned}
&Downarrow \
a_0 &= frac{1}{2pi}int_{0}^{2pi}f(t)dt
end{aligned} tag{1-1}
我们知道定积分的几何意义:被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负;
\ 对于周期为 2pi 的函数f(t)来说,frac{1}{2pi}int_{0}^{2pi}f(t)dt 正好是面积在周期上的平均值 接下来求系数an,二边同乘cos(nt)并求积分:
begin{aligned}
int_{0}^{2pi} f(t)cos(nt) dt &= int_{0}^{2pi}sum_{n=0}^{infty} left [ a_n cos(n t)cos(nt) b_n sin(n t)cos(nt) right ]dt \\
&= a_0 int_{0}^{2pi} cos(nt)dt a_1int_{0}^{2pi} cos( t)cos(nt)dt b_1 int_{0}^{2pi} sin( t)cos(nt)dt ... a_n int_{0}^{2pi} cos(n t)cos(nt)dt b_n int_{0}^{2pi} sin(n t)cos(nt)dt ... \\
&= 0 ... a_n int_{0}^{2pi} cos(n t)cos(nt)dt ... // 参考前的恒等式(a)至 (g) \\
&= a_n*pi
end{aligned}
begin{aligned}
&Downarrow \
a_n &= frac{1}{pi}int_{0}^{2pi}f(t)cos(nt)dt \
end{aligned} tag{1-2}
类似的方法,二边同乘sin(nt),然后求积分,就能得到bn:
begin{aligned}
int_{0}^{2pi} f(t)sin(nt) dt &= int_{0}^{2pi}sum_{n=0}^{infty} left [ a_n cos(n t)sin(nt) b_n sin(n t)sin(nt) right ]dt \\
&= a_0int_{0}^{2pi}sin(nt)dt a_1int_{0}^{2pi} cos( t)sin(nt)dt b_1 int_{0}^{2pi} sin( t)sin(nt)dt ... a_n int_{0}^{2pi} cos(n t)sin(nt)dt b_n int_{0}^{2pi} sin(n t)sin(nt)dt ... \\
&= 0 ... b_n int_{0}^{2pi} sin(n t)sin(nt)dt ... // 参考前的恒等式(a)至 (g) \\
&= b_n*pi
end{aligned}
begin{aligned}
&Downarrow \
b_n &= frac{1}{pi}int_{0}^{2pi}f(t)sin(nt)dt \
end{aligned} tag{1-3}
有了这几个系数的通用解,下面具体来应用一下,假设有一个方波函数,在1个周期内的值如下:
f(x)=begin{cases}
3, & xin[0,pi] \
0, & xin(pi,2pi]
end{cases}
套用刚才解出来的公式:
begin{aligned}
a_0 &=frac{1}{2pi}int_{0}^{2pi}f(x)dx\\
&=frac{1}{2pi}[int_{0}^{pi}3dx int_{pi}^{2pi}0dx] \\
&=frac{1}{2pi}[3x|_0^pi 0x|_pi^{2pi}] \\
&=frac{3}{2}
end{aligned}
begin{aligned}
a_n &= frac{1}{pi}int_{0}^{2pi}f(x)cos(nx)dx \\
&=frac{1}{pi}[int_0^{pi}3cos(nx)dx int_pi^{2pi}0cos(nx)dx] \\
&=frac{3}{pi}int_0^{pi}cos(nx)dx \\
&=frac{3}{npi}int_0^{pi}cos(nx)d(nx) \\
&=frac{3}{npi}sin(nx)|_0^pi \\
&=0 ,(n>1)
end{aligned}
即:所有cos(nx)前的系数都是0,展开结果中不包含余弦项。
begin{aligned}
b_n &= frac{1}{pi}int_{0}^{2pi}f(x)sin(nx)dx \\
&=frac{1}{pi}[int_0^{pi}3sin(nx)dx int_pi^{2pi}0sin(nx)dx] \\
&=frac{3}{pi}int_0^{pi}sin(nx)dx \\
&=frac{3}{npi}int_0^{pi}sin(nx)d(nx) \\
&=frac{-3}{npi}cos(nx)|_0^pi \\
&=frac{-3}{npi}[cos(npi)-1] \\
&=begin{cases}
0, & xin[偶数] \
frac{6}{npi}, & xin[奇数]
end{cases}
end{aligned}
画出来效果如下: