欢迎访问我的GitHub
这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos
《hive学习笔记》系列导航
- 基本数据类型
- 复杂数据类型
- 内部表和外部表
- 分区表
- 分桶
- HiveQL基础
- 内置函数
- Sqoop
- 基础UDF
- 用户自定义聚合函数(UDAF)
- UDTF
关于Sqoop
Sqoop是Apache开源项目,用于在Hadoop和关系型数据库之间高效传输大量数据,本文将与您一起实践以下内容:
- 部署Sqoop
- 用Sqoop将hive表数据导出至MySQL
- 用Sqoop将MySQL数据导入到hive表
部署
- 在hadoop账号的家目录下载Sqoop的1.4.7版本:
wget https://mirror.bit.edu.cn/apache/sqoop/1.4.7/sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz
- 解压:
tar -zxvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz
- 解压后得到文件夹sqoop-1.4.7.bin__hadoop-2.6.0,将mysql-connector-java-5.1.47.jar复制到sqoop-1.4.7.bin__hadoop-2.6.0/lib目录下
- 进入目录sqoop-1.4.7.bin__hadoop-2.6.0/conf,将sqoop-env-template.sh改名为sqoop-env.sh:
mv sqoop-env-template.sh sqoop-env.sh
- 用编辑器打开sqoop-env.sh,增加下面三个配置,HADOOP_COMMON_HOME和HADOOP_MAPRED_HOME是完整的hadoop路径,HIVE_HOME是完整的hive路径:
export HADOOP_COMMON_HOME=/home/hadoop/hadoop-2.7.7
export HADOOP_MAPRED_HOME=/home/hadoop/hadoop-2.7.7
export HIVE_HOME=/home/hadoop/apache-hive-1.2.2-bin
- 安装和配置完成了,进入sqoop-1.4.7.bin__hadoop-2.6.0/bin,执行./sqoop version查看sqoop版本,如下所示,可见是1.4.7版本(有些环境变量没配置会输出告警,在此先忽略):
[hadoop@node0 bin]$ ./sqoop version
Warning: /home/hadoop/sqoop-1.4.7.bin__hadoop-2.6.0/bin/../../hbase does not exist! HBase imports will fail.
Please set $HBASE_HOME to the root of your HBase installation.
Warning: /home/hadoop/sqoop-1.4.7.bin__hadoop-2.6.0/bin/../../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/sqoop-1.4.7.bin__hadoop-2.6.0/bin/../../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
Warning: /home/hadoop/sqoop-1.4.7.bin__hadoop-2.6.0/bin/../../zookeeper does not exist! Accumulo imports will fail.
Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
20/11/02 12:02:58 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
Sqoop 1.4.7
git commit id 2328971411f57f0cb683dfb79d19d4d19d185dd8
Compiled by maugli on Thu Dec 21 15:59:58 STD 2017
- sqoop装好之后,接下来体验其功能
MySQL准备
为了接下来的实战,需要把MySQL准备好,这里给出的MySQL的配置供您参考:
- MySQL版本:5.7.29
- MySQL服务器IP:192.168.50.43
- MySQL服务端口:3306
- 账号:root
- 密码:123456
- 数据库名:sqoop
关于MySQL部署,我这为了省事儿,是用docker部署的,参考《群晖DS218 部署mysql》
从hive导入MySQL(export)
- 执行以下命令,将hive的数据导入到MySQL:
./sqoop export
--connect jdbc:mysql://192.168.50.43:3306/sqoop
--table address
--username root
--password 123456
--export-dir '/user/hive/warehouse/address'
--fields-terminated-by ','
- 查看address表,数据已经导入:
从MySQL导入hive(import)
- 在hive的命令行模式执行以下语句,新建名为address2的表结构和address一模一样:
create table address2 (addressid int, province string, city string)
row format delimited
fields terminated by ',';
- 执行以下命令,将MySQL的address表的数据导入到hive的address2表,-m 2表示启动2个map任务:
./sqoop import
--connect jdbc:mysql://192.168.50.43:3306/sqoop
--table address
--username root
--password 123456
--target-dir '/user/hive/warehouse/address2'
-m 2
- 执行完毕后,控制台输入类似以下内容:
Virtual memory (bytes) snapshot=4169867264
Total committed heap usage (bytes)=121765888
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=94
20/11/02 16:09:22 INFO mapreduce.ImportJobBase: Transferred 94 bytes in 16.8683 seconds (5.5726 bytes/sec)
20/11/02 16:09:22 INFO mapreduce.ImportJobBase: Retrieved 5 records.
- 去查看hive的address2表,可见数据已经成功导入:
hive> select * from address2;
OK
1 guangdong guangzhou
2 guangdong shenzhen
3 shanxi xian
4 shanxi hanzhong
6 jiangshu nanjing
Time taken: 0.049 seconds, Fetched: 5 row(s)
- 至此,Sqoop工具的部署和基本操作已经体验完成,希望您在执行数据导入导出操作时,此文能给您一些参考