OpenCV 角点检测(二) Harrise

2022-05-07 09:12:10 浏览数 (1)

Harrise算子是在Moravec算子的基础上改进得到的,Moravec角点检测算子见链接:http://blog.csdn.net/chaipp0607/article/details/54649235

Harrise算子特点

Harrise算子将比于Moravec具有更高的时间复杂度,对噪声同样比较敏感,且存在非均匀响应。前者应用更加广泛,且具有不错的检测率。

Harrise算子计算步骤 (1).利用水平与竖直差分算子对图像进行卷积操作,计算的到相应的fx和fy,根据实对称矩阵,计算对应矩阵元素的值。 (2).利用高斯函数对矩阵M进行平滑操作,得到引得矩阵M。 (3).对每一个像素和给定的邻域窗口,计算局部特征结果矩阵M的特征值和响应函数H。 (4).选取响应函数H的阈值,根据非极大值抑制原理,同时满足阈值及某邻域内的局部极大值为候选点。

Harrise算子实现 opencv为Harrise算子提供了cornerHarris函数。API函数接口如下:

代码语言:javascript复制
CV_EXPORTS_W void cornerHarris( 
InputArray src,                                                 OutputArray dst, 
int blockSize,
int ksize, 
double k,
int borderType=BORDER_DEFAULT );

它的源码路径为:…opencvsourcesmodulesimgprocsrcthresh.cpp

源码如下:

代码语言:javascript复制
void cv::cornerHarris( InputArray _src,OutputArray _dst, int blockSize, int ksize, double k, int borderType )  
{  
   Mat src = _src.getMat();  
   _dst.create( src.size(), CV_32F );  
   Mat dst = _dst.getMat();  
   cornerEigenValsVecs( src, dst, blockSize, ksize, HARRIS, k, borderType);  
} 
//cornerEigenValsVecs函数源码
static void  
cornerEigenValsVecs( const Mat& src,Mat& eigenv, int block_size,  
                     int aperture_size, intop_type, double k=0.,  
                     intborderType=BORDER_DEFAULT )  
{  
#ifdef HAVE_TEGRA_OPTIMIZATION  
   if (tegra::cornerEigenValsVecs(src, eigenv, block_size, aperture_size,op_type, k, borderType))  
       return;  
#endif  
   
   int depth = src.depth();  
   double scale = (double)(1 << ((aperture_size > 0 ?aperture_size : 3) - 1)) * block_size;  
   if( aperture_size < 0 )  
       scale *= 2.;  
   if( depth == CV_8U )  
       scale *= 255.;  
   scale = 1./scale;  
   
   CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 );  
   
   Mat Dx, Dy;  
   if( aperture_size > 0 )  
    {  
       Sobel( src, Dx, CV_32F, 1, 0, aperture_size, scale, 0, borderType );  
       Sobel( src, Dy, CV_32F, 0, 1, aperture_size, scale, 0, borderType );  
    }  
   else  
    {  
       Scharr( src, Dx, CV_32F, 1, 0, scale, 0, borderType );  
       Scharr( src, Dy, CV_32F, 0, 1, scale, 0, borderType );  
    }  
   
   Size size = src.size();  
   Mat cov( size, CV_32FC3 );  
   int i, j;  
   
   for( i = 0; i < size.height; i   )  
    {  
       float* cov_data = (float*)(cov.data   i*cov.step);  
       const float* dxdata = (const float*)(Dx.data   i*Dx.step);  
       const float* dydata = (const float*)(Dy.data   i*Dy.step);  
   
        for( j = 0; j < size.width; j   )  
       {  
           float dx = dxdata[j];  
           float dy = dydata[j];  
   
           cov_data[j*3] = dx*dx;  
           cov_data[j*3 1] = dx*dy;  
           cov_data[j*3 2] = dy*dy;  
       }  
    }  
   
   boxFilter(cov, cov, cov.depth(), Size(block_size, block_size),  
       Point(-1,-1), false, borderType );  
   
   if( op_type == MINEIGENVAL )  
       calcMinEigenVal( cov, eigenv );  
   else if( op_type == HARRIS )  
       calcHarris( cov, eigenv, k );  
   else if( op_type == EIGENVALSVECS )  
       calcEigenValsVecs( cov, eigenv );  
}  
   
}  

参考opencv中的源码,自己定义一个角点检测的函数:

代码语言:javascript复制
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
void CornerHarris(const Mat& srcImage, Mat& result, 
	int blockSize, int kSize, double k)
{
	Mat src;
	srcImage.copyTo(src);
	result.create(src.size(), CV_32F);
	int depth = src.depth();
	// 检测掩膜尺寸
	double scale = (double)(1 << ((kSize > 0 ?
kSize : 3) - 1)) * blockSize;
	if (depth == CV_8U)
		scale *= 255.;
	scale = 1. / scale;
	// sobel滤波
	Mat dx, dy;
	Sobel(src, dx, CV_32F, 1, 0, kSize, scale, 0);
	Sobel(src, dy, CV_32F, 0, 1, kSize, scale, 0);
	Size size = src.size();
	cv::Mat cov(size, CV_32FC3);
	int i, j;
	// 求解水平与竖直梯度
	for (i = 0; i < size.height; i  ){
		float *covData = (float*)(cov.data   i*cov.step);
		const float *dxData = (const float*)(dx.data   i*dx.step);
		const float *dyData = (const float*)(dy.data   i*dy.step);
		for (j = 0; j < size.width; j  )
		{
			float dx_ = dxData[j];
			float dy_ = dyData[j];
			covData[3 * j] = dx_*dx_;
			covData[3 * j   1] = dx_*dy_;
			covData[3 * j   2] = dy_*dy_;
		}
	}
	// 计算窗口内求和
	boxFilter(cov, cov, cov.depth(), 
		Size(blockSize, blockSize), Point(-1, -1), false);
	// 判断图像连续性
	if (cov.isContinuous() && result.isContinuous())
	{
		size.width *= size.height;
		size.height = 1;
	}
	else
		size = result.size();
	// 计算响应函数 
	for (i = 0; i < size.height; i  )
	{
		// 获取图像矩阵指针
		float *resultData = (float*)(result.data   i*result.step);
		const float *covData = (const float*)(cov.data   i*cov.step);
		for (j = 0; j < size.width; j  )
		{
			// 焦点响应生成
			float a = covData[3 * j];
			float b = covData[3 * j   1];
			float c = covData[3 * j   2];
			resultData[j] = a*c - b*b - k*(a   c)*(a   c);
		}
	}
}
int main()
{
	cv::Mat srcImage = cv::imread("1.jpg");
	if (!srcImage.data)
		return -1;
	cv::imshow("srcImage", srcImage);
	cv::Mat srcGray, result;
	cvtColor(srcImage, srcGray, CV_BGR2GRAY);
	result = Mat::zeros(srcImage.size(), CV_32FC1);
	// 角点检测参数
	int blockSize = 2;
	int apertureSize = 3;
	double k = 0.04;
	// 角点检测
	// cornerHarris( srcGray, result, blockSize, apertureSize, k, BORDER_DEFAULT );
	CornerHarris(srcGray, result, blockSize, apertureSize, k);
	// 矩阵归一化
	normalize(result, result, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
	convertScaleAbs(result, result);
	// 绘图角点检测结果
	for (int j = 0; j < result.rows; j  )
	{
		for (int i = 0; i < result.cols; i  )
		{
			if ((int)(result.at<uchar>(j, i)) > 150)
			{
				circle(srcImage, Point(i, j), 5, Scalar(0), 2, 8, 0);
			}
		}
	}
	cv::imshow("result", srcImage);
	cv::waitKey(0);
	return 0;
}

原图:

结果图:

0 人点赞