因为项目需要对大量数据进行排序计算top k,开始了解并行计算框架,接触了spark,spark都是用scala写的,所以为了了解spark,恶补了一阵scala语言。 这是一种非常简练的函数式语言,最让我感觉兴趣的就是它天然支持并行计算,并且因为生成的目标代码是java虚拟上的class,所以与java有着天然的亲和力。可以与java代码之间自由的互相调用。 原本是想通过spark架构来实现大数据的快速排序(实现top k),仔细研究了spark后发现有难度,就暂时放弃了这个方案。但是想到了新的解决方法,就是利用scala(研究spark的副产品)的并行特性来实现大数据的快速排序模块,加入到系统中,供java代码调用。。。 下面的代码就是这个模块的核心排序算法。 总体的流程就是:
代码语言:javascript复制在top_mutable_par方法中,对要排序的数据进行分段,然后利用scala的并行特性,以并行方式调用sort_range对每一段数据进行分段排序,之后再reduce所有的分段排序结果
import scala.collection.mutable
import scala.collection.JavaConversions
/**
* 实现并行堆排序算法
* @author guyadong
* @param <A>
* @param <B>
* @param <S>
*/
class HeapSort[A,B,S<:Iterable[A]](f:A=>B)(implicit ord: Ordering[B]){
/**
* 对l排序返回排序后的Seq
* @param l 待排序集合的迭代器
* @param desc 降/升序(默认为true,降序)
* @return
*/
def sort(l: S,desc:Boolean=true)=HeapSort.sort(f)(l,0,desc)
/**
* 对l排序并返回前top个结果
* @param l 待排序集合的迭代器
* @param top 返回最多结果数目
* @param desc 降/升序(默认为true,降序)
* @return
*/
def top(l: S,top:Int,desc:Boolean=true)=HeapSort.sort(f)(l,top,desc)
/**
* 对可变集合排序,返回排序后的Seq
* @param l 待排序可变集合的迭代器
* @param desc 降/升序(默认为true,降序)
* @return
*/
def sort_m[M<:mutable.Seq[A]](l: M,desc:Boolean=true)=HeapSort.sort_mutable(f)(l,0,desc)
/**
* 对可变集合l排序并返回前top个结果
* @param l 待排序可变集合的迭代器
* @param top 返回最多结果数目
* @param desc 降/升序(默认为true,降序)
* @return
*/
def top_m[M<:mutable.Seq[A]](l: M,top:Int,desc:Boolean=true)=HeapSort.sort_mutable(f)(l,top,desc)
/**
* 对可变集合l并行排序并返回前top个结果
* @param l 待排序可变集合的迭代器
* @param top 返回最多结果数目
* @param desc 降/升序(默认为true,降序)
* @return
*/
def top_m_par[M<:mutable.Seq[A]](l: M,top:Int,desc:Boolean=true)=HeapSort.top_mutable_par(f)(l,top,desc)
/**
* 对可变集合l的指定范围排序并返回排序后的Seq
* @param seq 待排序可变集合
* @param top 返回最多结果数目
* @param desc 降/升序(默认为true,降序)
* @param from 待排序的起始位置
* @param until 待排序的结束位置
* @return
*/
def sort_range[M<:mutable.Seq[A]](seq: M,top:Int,desc:Boolean=true)(from:Int=0, until:Int=seq.length)=HeapSort.sort_mutableRange(f)(seq,top,desc)(from, until)
/**
* 对seq中两个已经排序的区段进行合并排序,将src合并到dst
* @param seq 可变集合
* @param src 待合并的源区段(起始位置,结束位置)
* @param dst 待合并的目标区段(起始位置,结束位置)
* @param desc 降/升序(默认为true,降序)
* @return
*/
def merge2Seq(seq: mutable.Seq[A],src:(Int,Int),dst:(Int,Int), desc: Boolean=true)=HeapSort.merge2Seq(f)(seq, src, dst, desc)
/**
* 对seq中两个已经排序的区段进行合并排序,将src合并到dst
* @param seq 可变集合
* @param src 待合并的源区段(起始位置,结束位置)
* @param dst 待合并的目标区段(起始位置,结束位置)
* @param desc 降/升序(默认为true,降序)
* @return
*/
def merge2Seq2(seq: mutable.Seq[A],src:(Int,Int),dst:(Int,Int), desc: Boolean=true)=HeapSort.merge2Seq2(f)(seq, src, dst, desc)
/**
* 对seq中两个已经排序的区段进行合并排序,将src合并到dst<br>
* 该算法在排序过程不申请新内存
* @param seq 可变集合
* @param src 待合并的源区段(起始位置,结束位置)
* @param dst 待合并的目标区段(起始位置,结束位置)
* @param desc 降/升序(默认为true,降序)
* @return
*/
def merge2SeqNM(seq: mutable.Seq[A],src:(Int,Int),dst:(Int,Int), desc: Boolean=true)=HeapSort.merge2SeqNM(f)(seq, src, dst, desc)
}
object HeapSort {
def sort[A, B, S <: Iterable[A]](f: A => B)(iterator: S, top: Int = 0,desc:Boolean=true)(implicit ord: Ordering[B]) = {
val bf = iterator.toBuffer
sort_mutable(f)(bf, top,desc)
}
def sort_mutable[A, B, S<:mutable.Seq[A]](f: A => B)(seq: S, top: Int = 0,desc:Boolean=true)(implicit ord: Ordering[B]) = {
sort_mutableRange(f)(seq,top,desc)()
(if (top < seq.length && top > 0) seq.takeRight(top) else seq).reverse
}
private def sort_mutableRange[A, B, S<:mutable.Seq[A]](f: A => B)(seq: S, top: Int = 0, desc:Boolean=true)(from:Int=0, until:Int=seq.length)(implicit ord: Ordering[B]) = {
buildHeapRange(f)(seq,desc)(from,until); // 构建堆
val sublen=until-from
val toplen = if (top <= 0 || top >= sublen) sublen else top
var i=until - 1
var continue=true
while(continue){
swap(seq, from, i)
if (i > (until - toplen)) {
heapify(f)(seq, from, i, desc, from)
i -= 1
}else continue=false
}
(i,until)
}
private def buildHeapRange[A, B](f: A => B)(seq: mutable.Seq[A],desc:Boolean)(from:Int,until:Int)(implicit ord: Ordering[B]) = {
var i=from ((until-from) >>> 1) - 1
while(i>=from){
heapify(f)(seq, i, until,desc,from)
i-=1
}
}
def cmp1_gt [A, B](f: A => B)(l: A, r: A)(implicit ord: Ordering[B]) = ord.gt(f(l), f(r))
def cmp1_lt [A, B](f: A => B)(l: A, r: A)(implicit ord: Ordering[B]) = ord.lt(f(l), f(r))
def cmp_gt [A, B](f: A => B,seq: mutable.Seq[A])(l: Int, r: Int)(implicit ord: Ordering[B]) = cmp1_gt(f)(seq(l),seq(r))
def cmp_lt [A, B](f: A => B,seq: mutable.Seq[A])(l: Int, r: Int)(implicit ord: Ordering[B]) = cmp1_lt(f)(seq(l),seq(r))
private def heapify[A, B](f: A => B)(seq: mutable.Seq[A], startpos: Int, max: Int, desc: Boolean,off:Int)(implicit ord: Ordering[B]): Unit = {
def gt = (l: Int, r: Int) => cmp_gt(f, seq)(l, r)
def lt = (l: Int, r: Int) => cmp_lt(f, seq)(l, r)
val cmp = if (desc) gt else lt
var largest = 0
var idx = startpos
var right=0
var left =0
do {
right = off ((idx-off 1) << 1)
left = right - 1
largest = if (left < max && cmp(left, idx))
left
else
idx
if (right < max && cmp(right, largest))
largest = right
if (largest != idx) {
swap(seq, largest, idx)
idx = largest
} else return
} while (true)
}
private def swap[A](seq: mutable.Seq[A], i: Int, j: Int) = {
val temp = seq(i)
seq(i) = seq(j)
seq(j) = temp
}
private def swap3[A](seq: mutable.Seq[A], i: Int, j: Int,k:Int) = {
val temp = seq(i)
seq(i) = seq(j)
seq(j) = seq(k)
seq(k) = temp
}
// private def _duplicateSeq[A](src: collection.Seq[A], srcPos: Int, dest: mutable.Seq[A], destPos: Int, length: Int): mutable.Seq[A] = {
// for (i <- 0 until length) dest(destPos i) = src(srcPos i)
// dest
// }
private def _duplicateSeq[A](src: collection.Seq[A], srcPos: Int, dest: mutable.Seq[A], destPos: Int, length: Int): mutable.Seq[A] = {
var i=0
while(i<length){
dest(destPos i) = src(srcPos i)
i =1
}
dest
}
def merge2Seq[A, B](f: A => B)(seq: mutable.Seq[A], src: (Int, Int), dst: (Int, Int), desc: Boolean)(implicit ord: Ordering[B]): (Int, Int) = {
if (!(if (desc) cmp_gt(f, seq)(dst._1, src._2 - 1) else cmp_lt(f, seq)(dst._1, src._2 - 1))) {
if (if (desc) cmp_gt(f, seq)(src._1, dst._2 - 1) else cmp_lt(f, seq)(src._1, dst._2 - 1)) {
val (srclen, dstlen) = ((src._2 - src._1), (dst._2 - dst._1))
val cplen = math.min(srclen, dstlen)
_duplicateSeq(seq, dst._1 cplen, seq, dst._1, dstlen - cplen)
_duplicateSeq(seq, src._2 - cplen, seq, dst._2 - cplen, cplen)
} else {
val q = mutable.Queue[A]()
def gt = (r: Int) => cmp1_gt(f)(seq(r), q.head)
def lt = (r: Int) => cmp1_lt(f)(seq(r), q.head)
val cmpdst = if (desc) gt else lt
var (topsrc, idx) = (src._2 - 1, dst._2 - 1)
while (idx >= dst._1) {
q.enqueue(seq(idx))
if (cmpdst(topsrc)) {
seq(idx) = seq(topsrc)
topsrc -= 1
} else
seq(idx) = q.dequeue()
idx -= 1
}
while (idx >= dst._1){
seq(idx) = q.dequeue()
idx -= 1
}
}
}
dst
}
def merge2Seq2[A, B](f: A => B)(seq: mutable.Seq[A], src: (Int, Int), dst: (Int, Int), desc: Boolean)(implicit ord: Ordering[B]): (Int, Int) = {
if (!(if (desc) cmp_gt(f, seq)(dst._1, src._2 - 1) else cmp_lt(f, seq)(dst._1, src._2 - 1))) {
if (if (desc) cmp_gt(f, seq)(src._1, dst._2 - 1) else cmp_lt(f, seq)(src._1, dst._2 - 1)) {
val (srclen, dstlen) = ((src._2 - src._1), (dst._2 - dst._1))
val cplen = math.min(srclen, dstlen)
_duplicateSeq(seq, dst._1 cplen, seq, dst._1, dstlen - cplen)
_duplicateSeq(seq, src._2 - cplen, seq, dst._2 - cplen, cplen)
} else {
val q = seq.slice(dst._1, dst._2)
def gt = (l: Int,r:Int) => cmp1_gt(f)(seq(l), q(r))
def lt = (l: Int,r:Int) => cmp1_lt(f)(seq(l), q(r))
val cmpdst = if (desc) gt else lt
var (topdst,topsrc, idx) = (q.length-1,src._2 - 1, dst._2 - 1)
while (idx >= dst._1&&topsrc>=src._1) {
if (cmpdst(topsrc,topdst)) {
seq(idx) = seq(topsrc)
topsrc -= 1
} else{
seq(idx) = q(topdst)
topdst -= 1
}
idx -= 1
}
if(idx>=dst._1)
_duplicateSeq(q, topdst-(idx-dst._1), seq, dst._1, idx-dst._1 1)
}
}
dst
}
def merge2SeqNM[A, B](f: A => B)(seq: mutable.Seq[A], src: (Int, Int), dst: (Int, Int), desc: Boolean)(implicit ord: Ordering[B]): (Int, Int) = {
if (!(if (desc) cmp_gt(f, seq)(dst._1, src._2 - 1) else cmp_lt(f, seq)(dst._1, src._2 - 1))) {
if (if (desc) cmp_gt(f, seq)(src._1, dst._2 - 1) else cmp_lt(f, seq)(src._1, dst._2 - 1)) {
val (srclen, dstlen) = ((src._2 - src._1), (dst._2 - dst._1))
val cplen = math.min(srclen, dstlen)
_duplicateSeq(seq, dst._1 cplen, seq, dst._1, dstlen - cplen)
_duplicateSeq(seq, src._2 - cplen, seq, dst._2 - cplen, cplen)
} else {
var (idx,qbf,qbt,qh)=(dst._2-1,dst._2-1,dst._2-1,dst._2-1)
var st=src._2-1
var swapst=()=>{}
var swapqh=()=>{}
def gt = (l: Int) => cmp_gt(f, seq)(l, qh)
def lt = (l: Int) => cmp_lt(f, seq)(l, qh)
val cmpdst = if (desc) gt else lt
def swaptop(top: Int) = {
val temp = seq(idx)
seq(idx) = seq(top)
seq(top) = temp
}
def getql=()=>qbf (qh-qbf 1)%(qbt-qbf 1)
def nextqh=()=>qbt-(qbt-qh 1)%(qbt-qbf 1)
// def moveStep(from: Int, to: Int, step: Int) =for (i <- (if (step > 0) (from to to).reverse else (from to to))) seq(i step) = seq(i)
def moveStep(from: Int, to: Int, step: Int) = {
var i = if (step > 0) to else from
def upf() = i >= from
def dnt() = i <= to
val (s, c) = if (step > 0) (-1, upf _) else (1, dnt _)
while (c()) {
seq(i step) = seq(i)
i = s
}
}
def swapLeft(from:Int,to:Int)={
val tmp=seq(from-1)
moveStep(from,to,-1)
seq(to)=tmp
}
def swapRight(from:Int,to:Int)={
val tmp=seq(to 1)
moveStep(from,to,1)
seq(from)=tmp
}
def swapStTail() = {
swaptop(st)
val ql = getql()
if (ql > qbf)
if (qh - qbf > qbt - ql) {
swap(seq, st, qbt)
swapRight(ql, qbt - 1)
qbf = st
} else {
swapLeft(qbf, qh)
qbf = st
qh = nextqh()
}
else{
qbf=st
}
}
def swapStHead() = {
swaptop(st)
swapst = swapStTail
swapqh = swapQhEnable
qh = st
qbf = st
qbt = st
}
def swapQhDisable() = {
qbf -= 1
qbt -= 1
qh -= 1
}
def swapQhEnable() = {
swaptop(qh)
qh = nextqh()
}
swapst = swapStHead
swapqh = swapQhDisable
while (idx >= dst._1 && st >= src._1) {
if (cmpdst(st)) {
swapst()
st -= 1
} else
swapqh()
idx -= 1
}
if (idx >= dst._1) {
val ql = getql()
_duplicateSeq(seq, ql, seq, dst._1, qbt - ql 1)
_duplicateSeq(seq, qbf, seq, dst._1 qbt - ql 1, ql - qbf)
}
}
}
dst
}
private val processors=Runtime.getRuntime.availableProcessors()//获取cpu核心数
def top_mutable_par[A, B, M <: mutable.Seq[A]](f: A => B)(seq: M, top: Int, desc: Boolean = true)(implicit ord: Ordering[B]) = {
//根据cpu核心数对要排序的数据分段
val step = (seq.length (processors)-1) / (processors)
//以并行方式对每一段数据进行排序
val rangs = for (i <- (0 until (seq.length step - 1) / step).par) yield { sort_mutableRange(f)(seq, top)(i * step, math.min(seq.length, (i 1) * step)) }
def merge = (left: (Int, Int), right: (Int, Int)) => if ((right._2 - right._1) > (left._2 - left._1)) merge2SeqNM(f)(seq, left, right, desc) else merge2SeqNM(f)(seq, right, left, desc)
//调用用reduce对分段排序后的结果进行合并
val r = rangs.reduce(merge(_, _))
//返回排序结果(需要反序)
seq.slice(r._1, r._2).reverse
}
def main(args: Array[String]) {
//测试代码
val m = new HeapSort[Int, Int, mutable.Buffer[Int]]((w: Int) => w)
println(Array(7,11,9,17,15,21,8,30,14,0,12,15,55,2,3,18,22,23,4).aggregate(List[Int]())(m.seqop, m.combop).toString())
val rnd=new java.util.Random()
val l=new Array[Int](40)
for(i<-0 until 5){
l(i)=rnd.nextInt(100)
}
for(i<-5 until l.length){
l(i)=rnd.nextInt(100)
}
for (i <- 0 to 0) {
println("==============time ", i,"=================")
val s=l.toBuffer[Int]
println(s)
val t1 = System.currentTimeMillis
val r1 = m.sort_range(s, 10, true)(0,5)
val r2 = m.sort_range(s, 10, true)(5,40)
val t2 = System.currentTimeMillis
printf("sort time cost:%f seconds(%d mills) usedn", (t2 - t1) / 1024D, t2 - t1)
for(i<-(r1._1 until r1._2)){
print(s(i) ",")
}
println(r1)
for(i<-(r2._1 until r2._2)){
print(s(i) ",")
}
println(r2)
m.merge2Seq2(s, r1, r2)
for(i<-(r2._1 until r2._2).reverse){
print(s(i) ",")
}
println(r2)
}
}
}