PyTorch 1.0 中文官方教程:迁移学习教程

2022-05-07 14:01:54 浏览数 (1)

译者:片刻

作者: Sasank Chilamkurthy

在本教程中,您将学习如何使用迁移学习来训练您的网络。您可以在 cs231n 笔记 上阅读更多关于迁移学习的信息

引用这些笔记:

在实践中,很少有人从头开始训练整个卷积网络(随机初始化),因为拥有足够大小的数据集是相对罕见的。相反,通常在非常大的数据集(例如 ImageNet,其包含具有1000个类别的120万个图像)上预先训练 ConvNet,然后使用 ConvNet 作为感兴趣任务的初始化或固定特征提取器。

如下是两个主要的迁移学习场景:

  • Finetuning the convnet: 我们使用预训练网络初始化网络,而不是随机初始化,就像在imagenet 1000数据集上训练的网络一样。其余训练看起来像往常一样。
  • ConvNet as fixed feature extractor: 在这里,我们将冻结除最终完全连接层之外的所有网络的权重。最后一个全连接层被替换为具有随机权重的新层,并且仅训练该层。
代码语言:javascript复制
# License: BSD
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mode

阅读全文/改进本文

0 人点赞