Redis系列之延时队列简介

2022-05-07 16:50:36 浏览数 (1)

文章目录

代码语言:txt复制
    - [一、业务场景](https://cloud.tencent.com/developer)
        - [1.1 实践场景](https://cloud.tencent.com/developer)
        - [1.2 实现方式](https://cloud.tencent.com/developer)
    - [二、Redis延时队列](https://cloud.tencent.com/developer)
        - [2.1 Redis列表实现](https://cloud.tencent.com/developer)
        - [2.2 Redis集合实现](https://cloud.tencent.com/developer)

一、业务场景

所谓延时队列就是延时的消息队列,下面说一下一些业务场景比较好理解

1.1 实践场景
  • 订单支付失败,每隔一段时间提醒用户
  • 用户并发量的情况,可以延时2分钟给用户发短信
1.2 实现方式

这些情况都可以使用延时队列来做,实现延时队列比较场景的有使用消息队列MQ来实现,比如RocketMQ等等,也可以使用Redis来实现,本博客主要介绍一下Redis实现延时队列

二、Redis延时队列

2.1 Redis列表实现

Redis实现延时队列可以通过其数据结构列表(list)来实现,顺便复习一下Redis的列表,实现列表,Redis可以通过队列和栈来实现:

代码语言:javascript复制
/* 队列:First in first out */

//加两个value
>rpush keynames key1 key2
2

//计算
>llen keynames
2

>lpop keynames
key1

>lpop keynames
key2

//rpush会自动过期的
>rpop keynames
NULL

/* 栈:First in last out */

//同样,加两个元素
>rpush keynames key1 key2
2

>rpop keynames
key2

>rpop keynames
key1

对于Redis的基本数据结构,可以参考我之前的博客:https://cloud.tencent.com/developer/article/1384379

然后怎么实现延时?Thread睡眠或者线程join?这种方法是可以实现,不过假如用户一多?10个请求就要延时10N了,这种情况系统性能不好的话就会出现线程阻塞了的情况。

队列空了的情况?就会出现pop 的死循环,这种情况很可怕,很吃系统CPU,虽然可以通过线程睡眠方法来缓解,但不是最好的方法

这时候就要介绍一下Redis的blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。消息的延迟几乎为零

2.2 Redis集合实现

Redis的有序集合(zset)也可以用于实现延时队列,消息作为value,时间作为score,这里顺便复习一下Redis的有序集合

代码语言:javascript复制
//9.0是score也就是权重
>zadd keyname 9.0 math
1

>zadd keyname 9.2 history
1

//顺序
>zrange keyname 0 -1
1) history
2) math

//逆序
>zrevrange keyname 0 -1
1) math
2) history

//相当于count()
>zcard keyname
2

获取指定key的score
>zscore keyname math
9

然后多个线程的环境怎么保证任务不被多个线程抢了?这里可以使用Redis的zrem命令来实现

Redis Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。

当 key 存在但不是有序集类型时,返回一个错误。

注意: 在 Redis 2.4 版本以前, ZREM 每次只能删除一个元素。

下面给出来自《Redis 深度历险:核心原理与应用实践》小册的例子:例子就是用有序集合和zrem来实现的

代码语言:javascript复制
import java.lang.reflect.Type;
import java.util.Set;
import java.util.UUID;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;

import redis.clients.jedis.Jedis;

public class RedisDelayingQueue<T> {

  static class TaskItem<T> {
    public String id;
    public T msg;
  }

  // fastjson 序列化对象中存在 generic 类型时,需要使用 TypeReference
  private Type TaskType = new TypeReference<TaskItem<T>>() {
  }.getType();

  private Jedis jedis;
  private String queueKey;

  public RedisDelayingQueue(Jedis jedis, String queueKey) {
    this.jedis = jedis;
    this.queueKey = queueKey;
  }

  public void delay(T msg) {
    TaskItem<T> task = new TaskItem<T>();
    task.id = UUID.randomUUID().toString(); // 分配唯一的 uuid
    task.msg = msg;
    String s = JSON.toJSONString(task); // fastjson 序列化
    jedis.zadd(queueKey, System.currentTimeMillis()   5000, s); // 塞入延时队列 ,5s 后再试
  }

  public void loop() {
    while (!Thread.interrupted()) {
      // 只取一条
      Set<String> values = jedis.zrangeByScore(queueKey, 0, System.currentTimeMillis(), 0, 1);
      if (values.isEmpty()) {
        try {
          Thread.sleep(500); // 歇会继续
        } catch (InterruptedException e) {
          break;
        }
        continue;
      }
      String s = values.iterator().next();
      if (jedis.zrem(queueKey, s) > 0) { // 抢到了
        TaskItem<T> task = JSON.parseObject(s, TaskType); // fastjson 反序列化
        this.handleMsg(task.msg);
      }
    }
  }

  public void handleMsg(T msg) {
    System.out.println(msg);
  }

  public static void main(String[] args) {
    Jedis jedis = new Jedis();
    RedisDelayingQueue<String> queue = new RedisDelayingQueue<>(jedis, "q-demo");
    Thread producer = new Thread() {

      public void run() {
        for (int i = 0; i < 10; i  ) {
          queue.delay("codehole"   i);
        }
      }

    };
    Thread consumer = new Thread() {

      public void run() {
        queue.loop();
      }

    };
    producer.start();
    consumer.start();
    try {
      producer.join();
      Thread.sleep(6000);
      consumer.interrupt();
      consumer.join();
    } catch (InterruptedException e) {
    }
  }
}

不过在多线程环境,是很难做控制的,上面例子也有缺陷,下面引用小册的说法:

上面的算法中同一个任务可能会被多个进程取到之后再使用 zrem 进行争抢,那些没抢到的进程都是白取了一次任务,这是浪费。可以考虑使用 lua scripting 来优化一下这个逻辑,将 zrangebyscore 和 zrem 一同挪到服务器端进行原子化操作,这样多个进程之间争抢任务时就不会出现这种浪费了。

0 人点赞