Python可以使用opencv库很方便地生成模糊图像,如果没有安装opencv的,可以用pip安装:
代码语言:javascript复制pip install python-opencv
想了解高斯模糊是什么的话,可以看wiki百科-高斯模糊。对于一般人,只要知道这个操作可以生成模糊图片就好了,一行代码即可搞定:
代码语言:javascript复制import cv2
img = cv2.GaussianBlur(ori_img, (9, 9), 0)
这个函数的第一个参数是原图像,第二个参数是高斯矩阵,要注意长和宽都必须为单数,第三个参数是标准差,如果写0,则函数会自行计算。
那怎么控制模糊程度呢?很简单,高斯矩阵的尺寸越大,标准差越大,处理过的图像模糊程度越大。
介绍完了简单的高斯模糊操作,我们加一个随机处理,来随机生成模糊程度不同的几张图像,其实也很简单,加一个随机函数来生成高斯矩阵的尺寸就可以了:
代码语言:javascript复制import cv2
import random
imgName = "img.png"
min_size = 11
ori_img = cv2.imread(imgName)
for i in range(3):
addition = random.choice((0, 2, 4, 6, 8, 10, 12))
size = min_size addition
kernel_size = (size, size)
img = cv2.GaussianBlur(ori_img, kernel_size, 0)
new_imgName = "New_" str(i) "_" str(kernel_size[0]) "_" imgName
cv2.imwrite(new_imgName, img)
这里利用了random库,来在一组数字中随机选择一个数,加到最小尺寸上,作为每次生成的模糊图片的高斯矩阵尺寸,这里我的尺寸最小值设为了11,大家可以根据需要自己尝试看效果来设定。