搞定大厂算法面试之leetcode精讲10.递归&分治

2021-11-29 08:42:35 浏览数 (1)

搞定大厂算法面试之leetcode精讲10.递归&分治

视频教程(高效学习):点击学习
目录:

1.开篇介绍

2.时间空间复杂度

3.动态规划

4.贪心

5.二分查找

6.深度优先&广度优先

7.双指针

8.滑动窗口

9.位运算

10.递归&分治

11剪枝&回溯

12.堆

13.单调栈

14.排序算法

15.链表

16.set&map

17.栈

18.队列

19.数组

20.字符串

21.树

22.字典树

23.并查集

24.其他类型题

递归三要素
  • 递归函数以及参数
  • 递归终止条件
  • 递归单层搜索逻辑

递归伪代码模版

代码语言:javascript复制
function recursion(level, param1, param2, ...) {
  //递归终止条件
  if (level > MAX_LEVEL) {
    // output result
    return;
  }

  //处理当前层
  process_data(level, data, ...);

  //进入下一层
  recursion(level   1, p1, ...);

  //重置状态
  reverse_state(level);
}
什么是分治:

分治会将大问题拆解成小问题,拆解到最小问题之后,开始不断合并结果,递归是分治实现的一种形式或者是分治实现的一部分,分治包括三分部分,分解、计算、合并。分治的场景很多,例如快速排序,归并排序。

ds_49

分治伪代码模版:

代码语言:javascript复制
function divide_conquer(problem, param1, param2, ...){
  if(problem === null){
    // return result
  }

  //分割问题
  subproblem = split_problem(problem, data)

  //计算子问题
  subResult1 = divide_conquer(subproblem[0], p1, ...)
  subResult2 = divide_conquer(subproblem[1], p1, ...)
  subResult3 = divide_conquer(subproblem[2], p1, ...)
  ...

  result = process_resule(subResult1, subResult2, subResult3,...)
}
举例

计算n! n! = 1 * 2 * 3... * n

代码语言:javascript复制
function factorial(n) {
  if (n <= 1) return 1;
  return n * factorial(n - 1);
}

factorial(6);
6 * factorial(5);
6 * 5 * factorial(4);
//...
6 * 5 * 4 * 3 * 2 * factorial(1);
6 * 5 * 4 * 3 * 2 * 1;
6 * 5 * 4 * 3 * 2;
//...
6 * 120;
720;

斐波那契数列F(n)=F(n-1) F(n 2)

代码语言:javascript复制
function fib(n) {
  if (n === 0 || n === 1) {
    return n;
  }
  return fib(n - 1)   fib(n - 2);
}
50. Pow(x, n) (medium)
方法1:分治

ds_66

  • 思路:当n是偶数的时候,对n进行分治,拆解为x*xn/2的次方,当n为奇数的时候拆分成x * myPow(x,n-1),注意当n是负数或者是0的特殊情况
  • 复杂度分析:时间复杂度:O(logn), n是进行二进制拆分的时间复杂度。空间复杂度:O(logn), n为递归深度

js:

代码语言:javascript复制
var myPow = function (x, n) {
    if (n === 0) return 1 // n=0直接返回1
    if (n < 0) {       //n<0时 x的n次方等于1除以x的-n次方分
        return 1 / myPow(x, -n)
    }
    if (n % 2) {    //n是奇数时 x的n次方 = x*x的n-1次方
        return x * myPow(x, n - 1)
    }
    return myPow(x * x, n / 2) //n是偶数,使用分治,一分为二,等于x*x的n/2次方 
}

Java:

代码语言:javascript复制
class Solution {
    public double myPow(double x, int n) {
        long N = n;
        return N >= 0 ? pow(x, N) : 1.0 / pow(x, -N);
    }

    public double  pow(double  x, long y) {
        if (y == 0) {
            return 1.0;
        }
        double ret = pow(x, y / 2);
        return y % 2 == 0 ? ret * ret : ret * ret * x;
    }
}
方法2:二进制

ds_50

  • 思路:对n的二进制不断右移动,判断n的二进制最后一位是否是1, 如果是1则将结果乘以x。
  • 复杂度分析:时间复杂度O(logn): n为对 n 进行二进制拆分的时间复杂度,空间复杂度O(1)

js:

代码语言:javascript复制
var myPow = function (x, n) {
    if (n < 0) {
        x = 1 / x;
        n = -n;
    }
    let result = 1;
    while (n) {
        if (n & 1) result *= x;  //判断n的二进制最后一位是否是1, 如果是1则将结果乘以x
        x *= x;
        n >>>= 1;
        //进行无符号右移1位,此处不能使用有符号右移(>>)
        //当n为-2^31转换成正数时的二进制位“10000000000000000000000000000000” , 
       //如果采用有符号右移时会取最左侧的数当符号即(1),所以返回的结果是 -1073741824
        /*
          C   中只有一种右移运算符——>>。它的定义如下:移出的低位舍弃;
          如果是无符号数,高位补0;如果是有符号数,高位补符号位。
          而JavaScript中有两种右移运算符——>>和>>>。其中>>是有符号右移,
          即高位补符号位(可能会出现负数变正数,正数变负数的异常情况);>>>是无符号右移,高位无脑补0。
        */
    }
    return result;
}

Java:

代码语言:javascript复制
class Solution {
    public double myPow(double x, int n) {
        if(x == 0.0f) return 0.0d;
        long b = n;
        double result = 1.0;
        if(b < 0) {
            x = 1 / x;
            b = -b;
        }
        while(b > 0) {
            if((b & 1) == 1) result *= x;
            x *= x;
            b >>= 1;
        }
        return result;
    }
}
169. 多数元素(easy)
方法1.排序
  • 思路:排序数组,如果有一个数字出现的频率大于n/2,则在数组nums.length / 2的位置就是这个数
  • 复杂度分析:时间复杂度:O(nlogn),快排的时间复杂度。空间复杂度:O(logn),排序需要logn的空间复杂度

js:

代码语言:javascript复制
var majorityElement = function (nums) {
    nums.sort((a, b) => a - b);
    return nums[Math.floor(nums.length / 2)];
};

Java:

代码语言:javascript复制
class Solution {
    public int majorityElement(int[] nums) {
        Arrays.sort(nums);
        return nums[nums.length / 2];
    }
}
方法2.哈希表
  • 思路:循环数组,用哈希表存储数字和对应的个数,如果数字出现的个数大于n/2则返回这个数
  • 复杂度分析:时间复杂度:O(n),n为nums数组的长度。空间复杂度:O(n),哈希表需要的空间

js:

代码语言:javascript复制
var majorityElement = function (nums) {
    let half = nums.length / 2;
    let obj = {};
    for (let num of nums) {
        obj[num] = (obj[num] || 0)   1;
        if (obj[num] > half) return num;
    }
};

Java:

代码语言:javascript复制
class Solution {
    public int majorityElement(int[] nums) {
        Map<Integer,Integer> obj = new HashMap<>();
        for(int num : nums){
            obj.put(num, obj.getOrDefault(num, 0)   1);
            if(obj.get(num) > nums.length / 2) return num;
        }
        return 0;
    }
}
方法3:抵消

js:

代码语言:javascript复制
//[1,1,2,2,2]
const majorityElement = nums => {
    let count = 1;
    let majority = nums[0];
    for (let i = 1; i < nums.length; i  ) {
        if (count === 0) {
            majority = nums[i];
        }
        if (nums[i] === majority) {
            count  ;
        } else {
            count--;
        }
    }
    return majority;
};

java:

代码语言:javascript复制
class Solution {
    public int majorityElement(int[] num) {
        int majority = num[0];
        int count = 1;
        for (int i = 1; i < num.length; i  ) {
            if (count == 0) {
                count  ;
                majority = num[i];
            } else if (majority == num[i]) {
                count  ;
            } else {
                count--;
            }
        }
        return majority;
    }
}
方法4.分治

ds_51

  • 思路:不断从数组的中间进行递归分割,直到每个区间的个数是1,然后向上合并左右区间个数较多的数,向上返回。
  • 复杂度分析:时间复杂度:O(nlogn),不断二分,复杂度是logn,二分之后每个区间需要线性统计left与right的个数,复杂度是n。空间复杂度:O(logn),递归栈的消耗,不断二分。

Js:

代码语言:javascript复制
var majorityElement = function (nums) {
    const getCount = (num, lo, hi) => {//统计lo到hi之间num的数量
        let count = 0;

        for (let i = lo; i <= hi; i  ) {
            if (nums[i] === num) count  ;
        }

        return count;
    };

    const getMode = (lo, hi) => {
        if (lo === hi) return nums[lo];
        
       //拆分成更小的区间
        let mid = Math.floor((lo   hi) / 2);
        let left = getMode(lo, mid);
        let right = getMode(mid   1, hi);

        if (left === right) return left;

        let leftCount = getCount(left, lo, hi);//统计区间内left的个数
        let rightCount = getCount(right, lo, hi);//统计区间内right的个数

        return leftCount > rightCount ? left : right;//返回left和right中个数多的那个
    };
    
    return getMode(0, nums.length - 1);
};

Java:

代码语言:javascript复制
class Solution {
    private int getCount(int[] nums, int num, int lo, int hi) {
        int count = 0;
        for (int i = lo; i <= hi; i  ) {
            if (nums[i] == num) {
                count  ;
            }
        }
        return count;
    }

    private int getMode(int[] nums, int lo, int hi) {
        if (lo == hi) {
            return nums[lo];
        }

        int mid = (hi - lo) / 2   lo;
        int left = getMode(nums, lo, mid);
        int right = getMode(nums, mid   1, hi);

        if (left == right) {
            return left;
        }

        int leftCount = getCount(nums, left, lo, hi);
        int rightCount = getCount(nums, right, lo, hi);

        return leftCount > rightCount ? left : right;
    }

    public int majorityElement(int[] nums) {
        return getMode(nums, 0, nums.length - 1);
    }
}
124. 二叉树中的最大路径和 (hard)
方法1.递归

ds_107

  • 思路:从根节点递归,每次递归分为走左边、右边、不动 3种情况,用当前节点加上左右子树最大路径和不断更新最大路径和
  • 复杂度:时间复杂度O(n),n为树的节点个数。空间复杂度O(n),递归深度,最差情况下为数的节点数

js:

代码语言:javascript复制
const maxPathSum = (root) => {
    let maxSum = Number.MIN_SAFE_INTEGER;//初始化最大路径和

    const dfs = (root) => {
        if (root == null) {//遍历节点是null 返回0
           return 0;
        }
        const left = dfs(root.left);   //递归左子树最大路径和
        const right = dfs(root.right); //递归右子树最大路径和

        maxSum = Math.max(maxSum, left   root.val   right);      //更新最大值

       //返回当前子树的路径和 分为走左边、右边、不动 3种情况
        const pathSum = root.val   Math.max(0, left, right);
        return pathSum < 0 ? 0 : pathSum;
    };

    dfs(root);

    return maxSum; 
};

java:

代码语言:javascript复制
class Solution {
    int maxSum = Integer.MIN_VALUE;

    public int dfs(TreeNode root){
        if (root == null) {
           return 0;
        }
        int left = dfs(root.left);
        int right = dfs(root.right);

        maxSum = Math.max(maxSum, left   root.val   right);

        int pathSum = root.val   Math.max(Math.max(0, left), right);
        return pathSum < 0 ? 0 : pathSum;
    }

    public int maxPathSum(TreeNode root) {
        dfs(root);
        return maxSum;
    }
}
53. 最大子序和 (easy)

ds_159

方法1:动态规划
  • 思路:当前最大子序和只和前面的子序和相关,循环数组,不断更新最大子序和
  • 复杂度:时间复杂度O(n),空间复杂度O(1)

js:

代码语言:javascript复制
var maxSubArray = function(nums) {
    const dp = [];
    let res = (dp[0] = nums[0]);//初始化状态
    for (let i = 1; i < nums.length;   i) {
        dp[i] = nums[i];
        if (dp[i - 1] > 0) {//前面的状态是正数 则加上
            dp[i]  = dp[i - 1];
        }
        res = Math.max(res, dp[i]);//更新最大值
    }
    return res;
};

//状态压缩
var maxSubArray = function(nums) {
    let pre = 0, maxAns = nums[0];
    nums.forEach((x) => {
        pre = Math.max(pre   x, x);
        maxAns = Math.max(maxAns, pre);
    });
    return maxAns;
};

java:

代码语言:javascript复制
class Solution {
    public int maxSubArray(int[] nums) {
        int pre = 0, maxAns = nums[0];
        for (int x : nums) {
            pre = Math.max(pre   x, x);
            maxAns = Math.max(maxAns, pre);
        }
        return maxAns;
    }
}
方法2.分治
  • 思路:不断分割,直到每个部分是一个数字为止,然后不断合并,返回左右和左右合并之后,3个最大子序和中的最大的一个
  • 复杂度:时间复杂度O(nlogn),二分复杂度O(logn),二分之后每一层统计左右和合并之后的最大子序和复杂度是O(n),所以之后的复杂度是O(nlogn)。空间复杂度O(logn),递归的栈空间,因为是二分,每次数据规模减半

js:

代码语言:javascript复制
function crossSum(nums, left, right, mid) {
    if (left === right) {//左右相等 返回左边的值
        return nums[left];
    }

    let leftMaxSum = Number.MIN_SAFE_INTEGER;//左边最大值初始化
    let leftSum = 0;
    for (let i = mid; i >= left; --i) {
        leftSum  = nums[i];
        leftMaxSum = Math.max(leftMaxSum, leftSum);//更新左边最大子序和
    }

    let rightMaxSum = Number.MIN_SAFE_INTEGER;
    let rightSum = 0;
    for (let i = mid   1; i <= right;   i) {
        rightSum  = nums[i];
        rightMaxSum = Math.max(rightMaxSum, rightSum);//更新右边最大子序和
    }

    return leftMaxSum   rightMaxSum;//返回左右合并之后的最大子序和
}

function _maxSubArray(nums, left, right) {
    if (left === right) {//递归终止条件
        return nums[left];
    }

    const mid = Math.floor((left   right) / 2);
    const lsum = _maxSubArray(nums, left, mid);//左边最大子序和
    const rsum = _maxSubArray(nums, mid   1, right);//右边最大子序和
    const cross = crossSum(nums, left, right, mid);//合并左右的之后的最大子序和

    return Math.max(lsum, rsum, cross);//返回3中子序和中最大的
}

var maxSubArray = function(nums) {
    return _maxSubArray(nums, 0, nums.length - 1);
};

java:

代码语言:javascript复制
public class Solution {

    public int maxSubArray(int[] nums) {
        int len = nums.length;
        if (len == 0) {
            return 0;
        }
        return _maxSubArray(nums, 0, len - 1);
    }

    private int crossSum(int[] nums, int left, int mid, int right) {
        int sum = 0;
        int leftSum = Integer.MIN_VALUE;
        for (int i = mid; i >= left; i--) {
            sum  = nums[i];
            if (sum > leftSum) {
                leftSum = sum;
            }
        }
        sum = 0;
        int rightSum = Integer.MIN_VALUE;
        for (int i = mid   1; i <= right; i  ) {
            sum  = nums[i];
            if (sum > rightSum) {
                rightSum = sum;
            }
        }
        return leftSum   rightSum;
    }

    private int _maxSubArray(int[] nums, int left, int right) {
        if (left == right) {
            return nums[left];
        }
        int mid = left   (right - left) / 2;
        return max3(_maxSubArray(nums, left, mid),
                _maxSubArray(nums, mid   1, right),
                crossSum(nums, left, mid, right));
    }

    private int max3(int num1, int num2, int num3) {
        return Math.max(num1, Math.max(num2, num3));
    }
}
938. 二叉搜索树的范围和 (easy)
方法1:dfs
  • 复杂度:时间复杂度O(n),空间复杂度O(n)

js:

代码语言:javascript复制
var rangeSumBST = function(root, low, high) {
    if (!root) {
        return 0;
    }
    if (root.val > high) {
        return rangeSumBST(root.left, low, high);
    }
    if (root.val < low) {
        return rangeSumBST(root.right, low, high);
    }
    return root.val   rangeSumBST(root.left, low, high)   rangeSumBST(root.right, low, high);
};

java:

代码语言:javascript复制
class Solution {
    public int rangeSumBST(TreeNode root, int low, int high) {
        if (root == null) {
            return 0;
        }
        if (root.val > high) {
            return rangeSumBST(root.left, low, high);
        }
        if (root.val < low) {
            return rangeSumBST(root.right, low, high);
        }
        return root.val   rangeSumBST(root.left, low, high)   rangeSumBST(root.right, low, high);
    }
}
方法2:bfs
  • 复杂度:时间复杂度O(n),空间复杂度O(n)

js:

代码语言:javascript复制
var rangeSumBST = function(root, low, high) {
    let sum = 0;
    const q = [root];
    while (q.length) {
        const node = q.shift();
        if (!node) {
            continue;
        }
        if (node.val > high) {
            q.push(node.left);
        } else if (node.val < low) {
            q.push(node.right);
        } else {
            sum  = node.val;
            q.push(node.left);
            q.push(node.right);
        }
    }
    return sum;
};

java:

代码语言:javascript复制
class Solution {
    public int rangeSumBST(TreeNode root, int low, int high) {
        int sum = 0;
        Queue<TreeNode> q = new LinkedList<TreeNode>();
        q.offer(root);
        while (!q.isEmpty()) {
            TreeNode node = q.poll();
            if (node == null) {
                continue;
            }
            if (node.val > high) {
                q.offer(node.left);
            } else if (node.val < low) {
                q.offer(node.right);
            } else {
                sum  = node.val;
                q.offer(node.left);
                q.offer(node.right);
            }
        }
        return sum;
    }
}

0 人点赞