一、题目描述
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:插入一个字符 删除一个字符 替换一个字符
示例 1: 输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
示例 2: 输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
提示: 0 <= word1.length, word2.length <= 500 word1 和 word2 由小写英文字母组成
二、解题思路
编辑距离算法被数据科学家广泛应用,是用作机器翻译和语音识别评价标准的基本算法。
最直观的方法是暴力检查所有可能的编辑方法,取最短的一个。所有可能的编辑方法达到指数级,但我们不需要进行这么多计算,因为我们只需要找到距离最短的序列而不是所有可能的序列。
我们可以对任意一个单词进行三种操作:
插入一个字符;
删除一个字符;
替换一个字符。
题目给定了两个单词,设为 A 和 B,这样我们就能够六种操作方法。
但我们可以发现,如果我们有单词 A 和单词 B:
对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。例如当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 末尾添加一个字符 e,得到相同的 doge;
同理,对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的;
对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。例如当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。
这样以来,本质不同的操作实际上只有三种:
1、在单词 A 中插入一个字符;
2、在单词 B 中插入一个字符;
3、修改单词 A 的一个字符。
这样以来,我们就可以把原问题转化为规模较小的子问题。我们用 A = horse,B = ros 作为例子,来看一看是如何把这个问题转化为规模较小的若干子问题的。
1、在单词 A 中插入一个字符:如果我们知道 horse 到 ro 的编辑距离为 a,那么显然 horse 到 ros 的编辑距离不会超过 a 1。这是因为我们可以在 a 次操作后将 horse 和 ro 变为相同的字符串,只需要额外的 1 次操作,在单词 A 的末尾添加字符 s,就能在 a 1 次操作后将 horse 和 ro 变为相同的字符串;
2、在单词 B 中插入一个字符:如果我们知道 hors 到 ros 的编辑距离为 b,那么显然 horse 到 ros 的编辑距离不会超过 b 1,原因同上;
3、修改单词 A 的一个字符:如果我们知道 hors 到 ro 的编辑距离为 c,那么显然 horse 到 ros 的编辑距离不会超过 c 1,原因同上。
那么从 horse 变成 ros 的编辑距离应该为 min(a 1, b 1, c 1)。
注意:为什么我们总是在单词 A 和 B 的末尾插入或者修改字符,能不能在其它的地方进行操作呢?答案是可以的,但是我们知道,操作的顺序是不影响最终的结果的。例如对于单词 cat,我们希望在 c 和 a 之间添加字符 d 并且将字符 t 修改为字符 b,那么这两个操作无论为什么顺序,都会得到最终的结果 cdab。
你可能觉得 horse 到 ro 这个问题也很难解决。但是没关系,我们可以继续用上面的方法拆分这个问题,对于这个问题拆分出来的所有子问题,我们也可以继续拆分,直到:
1、字符串 A 为空,如从 转换到 ro,显然编辑距离为字符串 B 的长度,这里是 2;
2、字符串 B 为空,如从 horse 转换到 ,显然编辑距离为字符串 A 的长度,这里是 5。
因此,我们就可以使用动态规划来解决这个问题了。我们用 D[i][j] 表示 A 的前 i 个字母和 B 的前 j 个字母之间的编辑距离。
如上所述,当我们获得 D[i][j-1],D[i-1][j] 和 D[i-1][j-1] 的值之后就可以计算出 D[i][j]。
1、D[i][j-1] 为 A 的前 i 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们在 A 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i][j-1] 1;
2、D[i-1][j] 为 A 的前 i - 1 个字符和 B 的前 j 个字符编辑距离的子问题。即对于 A 的第 i 个字符,我们在 B 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i-1][j] 1;
3、D[i-1][j-1] 为 A 前 i - 1 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们修改 A 的第 i 个字符使它们相同,那么 D[i][j] 最小可以为 D[i-1][j-1] 1。特别地,如果 A 的第 i 个字符和 B 的第 j 个字符原本就相同,那么我们实际上不需要进行修改操作。在这种情况下,D[i][j] 最小可以为 D[i-1][j-1]。
那么我们可以写出如下的状态转移方程:
若 A 和 B 的最后一个字母相同:
代码语言:javascript复制D[i][j]
=min(D[i][j−1] 1,D[i−1][j] 1,D[i−1][j−1])
=1 min(D[i][j−1],D[i−1][j],D[i−1][j−1]−1)
若 A 和 B 的最后一个字母不同:
代码语言:javascript复制D[i][j]=1 min(D[i][j−1],D[i−1][j],D[i−1][j−1])
所以每一步结果都将基于上一步的计算结果,示意如下:
对于边界情况,一个空串和一个非空串的编辑距离为 D[i][0] = i 和 D[0][j] = j,D[i][0] 相当于对 word1 执行 i 次删除操作,D[0][j] 相当于对 word1执行 j 次插入操作。
综上我们得到了算法的全部流程。
对于边界情况,一个空串和一个非空串的编辑距离为 D[i][0] = i 和 D[0][j] = j,D[i][0] 相当于对 word1 执行 i 次删除操作,D[0][j] 相当于对 word1执行 j 次插入操作。
三、代码
1、Python
代码语言:javascript复制class Solution:
def minDistance(self, word1: str, word2: str) -> int:
n = len(word1)
m = len(word2)
# 有一个字符串为空串
if n * m == 0:
return n m
# DP 数组
D = [ [0] * (m 1) for _ in range(n 1)]
# 边界状态初始化
for i in range(n 1):
D[i][0] = i
for j in range(m 1):
D[0][j] = j
# 计算所有 DP 值
for i in range(1, n 1):
for j in range(1, m 1):
down = D[i - 1][j] 1
left = D[i][j - 1] 1
left_down = D[i - 1][j - 1]
if word1[i - 1] != word2[j - 1]:
left_down = 1
D[i][j] = min(left, down, left_down)
return D[n][m]
2、Java
代码语言:javascript复制public class Solution {
public int minDistance(String word1, String word2) {
int n=word1.length();
int m=word2.length();
if(n*m==0){
return n m;
}
int[][] dp=new int[n 1][m 1];
//边界状态初始化
for(int i=0;i<=n;i ){
dp[i][0]=i;
}
for(int i=0;i<=m;i ){
dp[0][i]=i;
}
//计算所有 DP 值
for(int i=1;i<=n;i ){
for(int j=1;j<=m;j ){
int left=dp[i][j-1] 1;
int down=dp[i-1][j] 1;
int leftDown=dp[i-1][j-1];
if(word1.charAt(i-1)!=word2.charAt(j-1)){
leftDown =1;
}
dp[i][j]=Math.min(Math.min(left,down),leftDown);
}
}
return dp[n][m];
}
public static void main(String[] args) {
Solution solution=new Solution();
System.out.println(solution.minDistance("horse","ros"));
}
}
四、复杂度分析
时间复杂度 :O(mn),其中 m 为 word1 的长度,n 为 word2 的长度。
空间复杂度 :O(mn),我们需要大小为 O(mn) 的 DD 数组来记录状态值。