源码解析 PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播
目录
- [源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播
- 0x00 摘要
- 0x01 总体逻辑
- 0x02 Python 世界
- 0x03 C 世界
- 3.1 准备前向传播
- 3.2 重建桶
- 3.2.1 计算桶尺寸
- 3.2.2 同步桶indices
- 3.2.3 初始化桶
- 3.3 准备后向传播
- 3.3.1 重置
- 3.3.2 查找未使用的参数
- 0xFF 参考
0x00 摘要
前文已经对Reducer如何构建和几个重要场景做了介绍,本文就来分析 Reducer 如何实现前向传播。
本系列其他文章如下:
深度学习利器之自动微分(1)
深度学习利器之自动微分(2)
[源码解析]深度学习利器之自动微分(3) --- 示例解读
[源码解析]PyTorch如何实现前向传播(1) --- 基础类(上)
[源码解析]PyTorch如何实现前向传播(2) --- 基础类(下)
[源码解析] PyTorch如何实现前向传播(3) --- 具体实现
[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎
[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构
[源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑
[源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法
[源码解析] PyTorch 分布式(1)------历史和概述
[源码解析] PyTorch 分布式(2) ----- DataParallel(上)
[源码解析] PyTorch 分布式(3) ----- DataParallel(下)
[源码解析] PyTorch 分布式(4)------分布式应用基础概念
[源码解析] PyTorch分布式(5) ------ DistributedDataParallel 总述&如何使用
[源码解析] PyTorch分布式(6) ---DistributedDataParallel -- 初始化&store
[源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组
[源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇
[源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化
[源码解析] PyTorch 分布式(10)------DistributedDataParallel 之 Reducer静态架构
[源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer和Join操作
0x01 总体逻辑
我们还是需要祭出法宝,看看论文中的DDP总体逻辑:
然后给出一个前向传播的总体策略如下:
Forward Pass:
- 每个进程读去自己的训练数据,DistributedSampler确保每个进程读到的数据不同。
- DDP 获取输入并将其传递给本地模型。
- 模型进行前向计算,结果设置为 out。现在计算都是在每个进程(CUDA设备)上完成。
- 如果
find_unused_parameters
设置为True
,DDP 会分析本地模型的输出,从 out 开始遍历计算图,把未使用参数标示为 ready,因为每次计算图都会改变,所以每次都要遍历。- 此模式(Mode)允许在模型的子图上向后运行,并且 DDP 通过从模型输出out遍历 autograd 图,将所有未使用的参数标记为就绪,以减少反向传递中涉及的参数。
- 在后向传播期间,Reducer会规约所有桶,在此过程中,
Reducer
会等待未准备好的参数。将参数梯度标记为就绪并不能帮助 DDP 跳过桶,但它会阻止 DDP 在向后传递期间永远等待不存在的梯度。 - 请注意,遍历 autograd 图会引入额外的开销,因此应用程序仅在必要时才设置
find_unused_parameters
为True
。
- 返回out即可。这点与 DP不同,DDP的模型网络输出不需要被gather到 rank 0进程。
0x02 Python 世界
我们还是从 Python 代码入手开始分析,代码位于:torch/nn/parallel/distributed.py。
我们这里省略 join 相关,只关注主体部分,forward 方法逻辑如下:
- 保存线程本地状态。
- 如果做配置,则调用 reducer.prepare_for_forward 为forward做准备。
- 如果配置ddp_join_enabled,做相应处理。
- 在前向传播之前使用 _rebuild_buckets 来重置桶。
- 在 _rebuild_buckets 函数之中,也许会在释放旧bucket之前分配新bucket。
- 如果要节省峰值内存使用量,请在正向计算期间峰值内存使用量增加之前调用
_rebuild_bucket
。
- 如果需要同步,则调用_sync_params对前向传播参数进行前向传播参数。
- 进行前向传播。
- 如果需要同步后向传播梯度,则调用prepare_for_backward。
- 当DDP参数 find_unused_parameter 为 true 时,其会在 forward 结束时,启动一个回溯,标记出所有没被用到的 parameter,提前把这些设定为 ready,这样 backward 就可以在一个 subgraph 之上进行,但这样会牺牲一部分时间。
具体代码如下:
代码语言:javascript复制 def forward(self, *inputs, **kwargs):
with torch.autograd.profiler.record_function("DistributedDataParallel.forward"):
# 保存线程本地状态
self.reducer.save_thread_local_state()
# 如果做配置,则调用 reducer 为forward做准备
if torch.is_grad_enabled() and self.require_backward_grad_sync:
self.logger.set_runtime_stats_and_log()
self.num_iterations = 1
self.reducer.prepare_for_forward()
# 如果配置ddp_join_enabled,做相应处理
if self.ddp_uneven_inputs_config.ddp_join_enabled:
ones = torch.ones(1, device=self.device)
work = dist.all_reduce(ones, group=self.process_group, async_op=True)
if self.ddp_uneven_inputs_config.ddp_join_throw_on_early_termination:
# Active ranks schedule an allreduce with zeros, inactive
# ranks schedule them with 1. If the result != 0 it
# indicates at least one rank has terminated and we should
# throw.
zeros = torch.zeros(1, device=self.device)
dist.all_reduce(zeros, group=self.process_group)
should_throw_stop_iteration = zeros.item()
if should_throw_stop_iteration:
raise RuntimeError(
"Detected at least one rank that exhausted inputs. Throwing across all ranks."
)
else:
self.reducer._set_forward_pass_work_handle( # 是join这里用到
work,
self.ddp_uneven_inputs_config.ddp_join_divide_by_initial_world_size,
)
# Calling _rebuild_buckets before forward compuation,
# It may allocate new buckets before deallocating old buckets
# inside _rebuild_buckets. To save peak memory usage,
# call _rebuild_buckets before the peak memory usage increases
# during forward computation.
# This should be called only once during whole training period.
# 在前向传播之前使用 _rebuild_buckets 来重置桶
# 在此函数内,也许在释放旧bucket之前分配新bucket。
# 如果要节省峰值内存使用量,请在正向计算期间峰值内存使用量增加之前调用_rebuild_bucket。
# 在整个训练期间,这只能调用一次。
if torch.is_grad_enabled() and self.reducer._rebuild_buckets():
logging.info("Reducer buckets have been rebuilt in this iteration.")
# 如果需要同步前向传播参数,则进行同步
if self.require_forward_param_sync:
self._sync_params()
if self.ddp_uneven_inputs_config.ddp_join_enabled:
# Notify joined ranks whether they should sync in backwards pass or not.
self._check_global_requires_backward_grad_sync(is_joined_rank=False)
# 进行前向传播
if self.device_ids:
# 多卡情况
inputs, kwargs = self.to_kwargs(inputs, kwargs, self.device_ids[0])
output = self.module(*inputs[0], **kwargs[0])
else:
output = self.module(*inputs, **kwargs)
# 如果需要同步后向传播梯度,则调用prepare_for_backward
if torch.is_grad_enabled() and self.require_backward_grad_sync:
# 当DDP参数 find_unused_parameter 为 true 时,其会在 forward 结束时,启动一个回溯,标记出所有没被用到的 parameter,提前把这些设定为 ready,这样 backward 就可以在一个 subgraph 进行,但这样会牺牲一部分时间。
self.require_forward_param_sync = True
# We'll return the output object verbatim since it is a freeform
# object. We need to find any tensors in this object, though,
# because we need to figure out which parameters were used during
# this forward pass, to ensure we short circuit reduction for any
# unused parameters. Only if `find_unused_parameters` is set.
if self.find_unused_parameters and not self.static_graph:
# Do not need to populate this for static graph.
self.reducer.prepare_for_backward(list(_find_tensors(output)))
else:
self.reducer.prepare_for_backward([])
else:
self.require_forward_param_sync = False
# TODO. Right now we add this sink for static_graph training only. once
# this feature is stable, we will add this sink for all cases. E.g.
# This sink can help capture more accuracte backward start time as well.
if self.static_graph and self.num_iterations == 1:
# Need to grab list of tensors from user output in order to pass
# to custom autograd function.
output_tensor_list, treespec = tree_flatten(output)
passthrough_tensor_list = _DDPSink.apply(
self.reducer,
*output_tensor_list
)
# Reconstruct output data structure.
output = tree_unflatten(passthrough_tensor_list, treespec)
return output
其中,使用 _sync_params 来同步模型参数,具体是使用 _distributed_broadcast_coalesced 进行完成。
代码语言:javascript复制def _sync_params(self):
with torch.no_grad():
# module buffer sync
if self.will_sync_module_buffers():
# Synchronize buffers across processes.
# If we are running DDP with the join manager, we have to agree
# upon a rank to sync module buffers from, since rank 0 may
# already have been joined and have stale module buffers.
if self.ddp_uneven_inputs_config.ddp_join_enabled:
authoritative_rank = self._find_common_rank(
self._distributed_rank, True
)
else:
# The process with rank 0 is considered the authoritative copy.
authoritative_rank = 0
self._distributed_broadcast_coalesced(
self.modules_buffers[0],
self.broadcast_bucket_size,
authoritative_rank,
)
0x03 C 世界
我们接下来进入到 C 世界,看看这里如何支持前向传播。具体分为:准备前向传播,重建桶,准备后向传播这几部分。
3.1 准备前向传播
这里把 num_iterations_ 增加,并且记录时间。
代码语言:javascript复制void Reducer::prepare_for_forward() {
std::lock_guard<std::mutex> lock(mutex_);
num_iterations_ ; // 这里会递增
if (should_collect_runtime_stats()) {
record_forward_compute_start_time();
}
}
3.2 重建桶
接下来进行重建桶,具体分为:
- 配置各种尺寸限制。
- 计算桶的尺寸。
- 同步桶indices。
- 初始化桶。
bool Reducer::rebuild_buckets() {
// Ensure reduction for previous backwards pass is finished. If user's model
// has unused parameters for example, this will raise an error recommending to
// run with find_unused_parameters=True, instead of the size mismatch
// exception below.
std::lock_guard<std::mutex> lock(mutex_);
ensure_prior_reduction_finished();
if (!should_rebuild_buckets() || rebuilt_params_.empty()) {
return false;
}
std::vector<std::vector<size_t>> rebuilt_bucket_indices;
// 配置各种尺寸限制
std::vector<size_t> bucket_size_limits;
bucket_size_limits.push_back(kDefaultFirstBucketBytes);
bucket_size_limits.push_back(bucket_bytes_cap_);
// 计算桶的尺寸
rebuilt_bucket_indices = compute_bucket_assignment_by_size(
rebuilt_params_,
bucket_size_limits,
expect_sparse_gradients_[0],
rebuilt_param_indices_);
// For rebuilt bucket indices, it needs to be synced across all ranks.
// Broadcast the newly rebuilt bucket indices from rank 0 in default.
// After syncing up rebuilt bucket indices, initialize buckets for reducer.
// 同步桶indices
sync_bucket_indices(rebuilt_bucket_indices);
has_rebuilt_bucket_ = true;
rebuilt_params_.clear();
rebuilt_param_indices_.clear();
// 初始化桶
initialize_buckets(std::move(rebuilt_bucket_indices));
return true;
}
我们接下来具体看看如何重建。
3.2.1 计算桶尺寸
我们首先要看看compute_bucket_assignment_by_size 之中关键结构如下,BucketAccumulator 可以认为是实际的桶。
代码语言:javascript复制struct BucketAccumulator {
std::vector<size_t> indices; // 桶内容,是张量列表
size_t size = 0; // 桶大小,比如若干mb
}; // 桶的逻辑内容
// Keep vector of indices and size accumulator by tensor type and device.
std::unordered_map<BucketKey, BucketAccumulator, c10::hash<BucketKey>>
buckets; // 所有桶的列表,每一个实际桶可以认为是 BucketAccumulator
其次,我们来看看 compute_bucket_assignment_by_size的具体逻辑:
- 生成一个计算结果 result,并且使用参数tensors的大小来为result预留出空间。
- 生成一个buckets,这是所有桶的列表,每一个实际桶可以认为是 BucketAccumulator
- 遍历传入的所有张量,对于每一个张量:
- 如果有index,就拿到张量的index。
- 如果配置了期待sparse gradient,则把这个张量自己放入一个桶,因为没法和其他张量放在一起。
- 使用张量信息构建桶的key。
- 使用 key 找到对应的桶, 拿到BucketAccumulator。
- 向该桶的张量列表 indices 里面插入新张量的index,indices 是 tensor index list。
- 增加对应桶大小。
- 如果需要,就设定成大小限制的初始值。
- 如果桶的尺寸大于最小值限制,就是说目前桶的尺寸已经达到了桶的最大限制,按说需要转移到新桶了(实际上确实转移到了逻辑的新桶,但是实际还是在现有桶内执行,因为 type, device 还是同样的,还是应该在原有桶内继续累积,不过原有桶的indice已经转移到了result之中,就相当于清空了)。
- 把桶内容插入到返回result,就是说,当桶尺寸过大的时候,就先插入到result之中。
- 利用 BucketAccumulator() 重新生成桶,bucket是个引用,所以直接赋值,就相当于清空原有的桶,就是原来桶继续用,但是桶内原有的indices已经转移到了result之中。把剩余的桶内indices插入到返回值result。之前已经有些直接插入到了result之中。
- 对 result 进行排序:
- 如果 tensor_indices 非空,说明张量的顺序已经是梯度准备好的顺序,不需要再排序了。
- 如果 tensor_indices 是空的,依据最小张量index来排序,这里假定张量的顺序是他们使用的顺序(或者说是他们梯度产生次序的反序)。这种排序可保证桶是按照连续不断的顺序准备好。
- 注意,这里就是正序排列,等到创建Reducer的时候,才反序传入:list(reversed(bucket_indices))
另外需要注意的是:因为 tensors就是 Python 代码中的参数 parameters0,而 parameters0 是按照 parametes() 的返回结果来的,所以DDP最终是按model.parameters()的相反顺序启动AllReduce。
代码语言:javascript复制std::vector<std::vector<size_t>> compute_bucket_assignment_by_size(
const std::vector<at::Tensor>& tensors,
const std::vector<size_t>& bucket_size_limits, // 桶大小限制
const std::vector<bool>& expect_sparse_gradient,
const std::vector<int64_t>& tensor_indices) { //实际上,初始化时候没有传入 tensor_indices
// Either expect_sparse_gradient is not specified or it has as many elements
// as the vector with tensors.
TORCH_INTERNAL_ASSERT(
expect_sparse_gradient.empty() ||
(tensors.size() == expect_sparse_gradient.size()));
TORCH_INTERNAL_ASSERT(tensors.size() > 0);
std::vector<std::vector<size_t>> result;
result.reserve(tensors.size()); // 预留大小
// Keep iterator into the size_limit vector by tensor type and device.
// This is done so that we can use the consecutive bucket limits per type.
std::unordered_map<
BucketKey,
std::vector<size_t>::const_iterator,
c10::hash<BucketKey>>
bucket_size_limit_iterators;
// Local accumulator type for a single bucket.
struct BucketAccumulator {
std::vector<size_t> indices; // 桶内容,是张量列表
size_t size = 0; // 桶大小,比如若干mb
}; // 桶的逻辑内容
// Keep vector of indices and size accumulator by tensor type and device.
std::unordered_map<BucketKey, BucketAccumulator, c10::hash<BucketKey>>
buckets; // 所有桶的列表,每一个实际桶可以认为是 BucketAccumulator
for (size_t i = 0; i < tensors.size(); i ) { // 遍历传入的所有张量
const auto& tensor = tensors[i]; //拿到张量
TORCH_CHECK(!tensor.is_sparse(), "No support for sparse tensors.");
// when tensor_indices is empty, the index of tensors[i] assigned to
// bucket is i, otherwise the tensor index is tensor_indices[i].
auto tensor_index = i; // 就是给所有的tensor一个index,从0开始递增,一直到 tensors.size()
if (!tensor_indices.empty()) {
tensor_index = tensor_indices[i]; // 如果有index,就拿到张量的index
}
// If we expect a sparse gradient to be produced for this tensor, it cannot
// be grouped together with other gradients and gets its own bucket.
// 如果配置了期待sparse gradient,则把这个张量自己放入一个桶,因为没法和其他张量放在一起
if (!expect_sparse_gradient.empty() &&
expect_sparse_gradient[tensor_index]) {
result.push_back({tensor_index});
continue;
}
auto key = BucketKey(tensor.scalar_type(), tensor.device()); //使用张量信息构建桶的key
auto& bucket = buckets[key]; // 找到对应的桶, 拿到BucketAccumulator
bucket.indices.push_back(tensor_index); // 该桶的张量列表里面插入新张量的index,indices 是 tensor index list
bucket.size = tensor.numel() * tensor.element_size();// 增加对应桶大小
// Initialize bucket size limit iterator if necessary.
// 如果需要,就设定成大小限制的初始值
if (bucket_size_limit_iterators.count(key) == 0) {
bucket_size_limit_iterators[key] = bucket_size_limits.begin();
}
// bucket_size_limit_iterator 就是桶大小的范围, 即 [_DEFAULT_FIRST_BUCKET_BYTES, int(bucket_cap_mb * 1024 * 1024)]
auto& bucket_size_limit_iterator = bucket_size_limit_iterators[key];
const auto bucket_size_limit = *bucket_size_limit_iterator; // 当前最小值限制
if (bucket.size >= bucket_size_limit) {
// 如果桶的尺寸大于最小值限制,就是说目前桶的尺寸已经达到了桶的最大限制,按说需要转移到新桶了(实际上确实转移到了逻辑的新桶,但是实际还是在现有桶内执行,因为 type, device 还是同样的,还是应该在原有桶内继续累积,不过原有桶的indice已经转移到了result之中,就相当于清空了)
result.emplace_back(std::move(bucket.indices)); // 把桶内容插入到返回result,就是说,当桶尺寸过大的时候,就先插入到result之中。
bucket = BucketAccumulator(); // 重新生成桶,bucket是个引用,所以直接赋值,就相当于清空原有的桶,就是原来桶继续用,但是桶内原有的indices已经转移到了result之中。
// Advance to the next bucket size limit for this type/device.
// 前进到下一个尺寸限制
auto next = bucket_size_limit_iterator 1;
if (next != bucket_size_limits.end()) {
bucket_size_limit_iterator = next;
}
}
}
// Add remaining buckets. 把剩余的桶内indices插入到返回值,因为之前已经有些直接插入到了result之中
for (auto& it : buckets) {
auto& bucket = it.second;
if (!bucket.indices.empty()) {
result.emplace_back(std::move(bucket.indices));
}
}
// If tensor_indices is not empty, the order of the tensors is in the gradient
// ready order, so no need to sort.
// If tensor_indices is empty, sort resulting buckets by the minimum tensor
// index they include. We assume that the order of the tensors is the order in
// which they are used (or the reverse order in which their gradients are
// produced). This sorting step ensures that the buckets are ready in
// consecutive order.
// 如果 tensor_indices 非空,说明张量的顺序已经是梯度准备好的顺序,不需要再排序了
// 如果 tensor_indices 是空的,依据最小张量index来排序,这里假定张量的顺序是他们使用的顺序(或者说是他们梯度产生次序的反序)。这种排序可保证桶是按照连续不断的顺序准备好。
// 注意,这里就是正序排列,等到创建Reducer的时候,才反序传入:list(reversed(bucket_indices))
if (tensor_indices.empty()) {
std::sort(
result.begin(),
result.end(),
[](const std::vector<size_t>& a, const std::vector<size_t>& b) {
// 对于任意两个vector,排序的依据是:用这两个vector之中最小index来排序
const auto amin = std::min_element(a.begin(), a.end()); // a中的最小index
const auto bmin = std::min_element(b.begin(), b.end()); // b中的最小index
return *amin < *bmin;
});
}
return result;
}
result 最终如下,里面每个vector 都对应了一个bucket,里面是都是 tensor 的 index,这里都是从小到大顺序排序。模型参数以(大致)Model.parameters()
与给定模型相反的顺序分配到桶中 。使用相反顺序的原因是因为 DDP 期望梯度在反向传递期间以大约该顺序准备就绪。
-----------------------------------------------------------------------
| |
| <tensor index 1, tensor index 2, tensor index 3, tensor index 4> |
| |
| |
| <tensor index 5, tensor index 6, tensor 7> |
| |
| |
| ...... |
| |
| |
| <tensor index 8, tensor index 9, tensor index 10, tensor index 11> |
| |
-----------------------------------------------------------------------
3.2.2 同步桶indices
产生尺寸之后,就使用 sync_bucket_indices 同步桶的indices,其逻辑如下:
- 遍历桶,把桶的大小都记录到bucket_sizes。
- 配置TensorOptions。
- 把桶对应的indices和桶数目放入indices_tensor,这里是通过 PyTorch accessor来对张量进行读写,accessor就像是一个张量,但它将张量的维度和 dtype 硬编码为了模板参数,可以高效的访问元素。
- 因为 NCCL这样的 ProcessGroup 只支持device之间的操作,所以把indices_tensor拷贝到indices_tensor_device。
- 对 indices_tensor_device 进行广播。
- 类似,对桶尺寸进行广播。
- 广播结束之后,遍历桶,使用从rank 0收到的num_buckets, bucket_sizes_tensor 和 indices_tensor 更新传进来的参数bucket_indices。
void Reducer::sync_bucket_indices(
std::vector<std::vector<size_t>>& bucket_indices) {
auto num_buckets = bucket_indices.size();
std::vector<size_t> bucket_sizes;
bucket_sizes.reserve(num_buckets);
int64_t total_size = 0;
//遍历桶,把桶的大小都记录到bucket_sizes
for (size_t i = 0; i < num_buckets; i ) {
auto bucket_size = bucket_indices.at(i).size();
bucket_sizes.push_back(bucket_size);
total_size = bucket_size;
}
// 配置TensorOptions
at::TensorOptions options;
options = options.dtype(at::kInt);
options = options.device(replicas_[0][0].device());
// Group indices and num_bucket together into indices_tensor
// Broadcast this tensor first, as its size is equal among all processes
// 把桶对应的indices和桶数目放入indices_tensor,这里是通过 PyTorch accessor来对张量进行读写,accessor就像是一个张量,但它将张量的维度和 dtype 硬编码为了模板参数,可以高效的访问元素
auto indices_tensor = at::empty({total_size 1}, at::kInt);
auto indices_accessor = indices_tensor.accessor<int, 1>();
auto indices_accessor_Index = 0;
for (size_t i = 0; i < num_buckets; i ) {
const auto& bucket_size = bucket_indices.at(i).size();
for (size_t j = 0; j < bucket_size; j ) {
indices_accessor[indices_accessor_Index ] = bucket_indices[i][j];
}
}
indices_accessor[indices_accessor_Index] = num_buckets;
// Copy CPU tensor to device tensor, as the process_group_ could be NCCL and
// it can only broadcast device tensors.
auto indices_tensor_device = at::empty({total_size 1}, options);
// 因为 NCCL这样的 ProcessGroup 只支持device之间的操作,所以把indices_tensor拷贝到indices_tensor_device
indices_tensor_device.copy_(indices_tensor, /*non_blocking=*/true);
std::vector<at::Tensor> indices_tensor_list = {indices_tensor_device};
// 对 indices_tensor_device 进行广播
process_group_->broadcast(indices_tensor_list)->wait();
indices_tensor.copy_(indices_tensor_list.front(), /*non_blocking=*/false);
// Update num_buckets after receiving it from rank 0
num_buckets = indices_accessor[indices_accessor_Index];
// Broadcast bucket_sizes
// 类似,对桶尺寸进行广播
auto bucket_sizes_tensor = at::empty({(int64_t)num_buckets}, at::kInt);
auto bucket_sizes_accessor = bucket_sizes_tensor.accessor<int, 1>();
for (size_t i = 0; i < num_buckets; i ) {
// For rank != 0, it is possible that local num buckets bucket_sizes.size()
// is smaller than broadcasted num_buckets
bucket_sizes_accessor[i] =
bucket_sizes.at(std::min(i, (bucket_sizes.size() - 1)));
}
auto bucket_sizes_tensor_device = at::empty({(int64_t)num_buckets}, options);
bucket_sizes_tensor_device.copy_(bucket_sizes_tensor, /*non_blocking=*/true);
std::vector<at::Tensor> bucket_sizes_tensor_list = {
bucket_sizes_tensor_device};
process_group_->broadcast(bucket_sizes_tensor_list)->wait();
bucket_sizes_tensor.copy_(
bucket_sizes_tensor_list.front(), /*non_blocking=*/false);
// Clear bucket_indices first, and then update bucket_indices using received
// num_buckets, bucket_sizes_tensor and indices_tensor from rank 0
bucket_indices.clear();
bucket_indices.reserve(num_buckets);
indices_accessor_Index = 0;
// 遍历桶,使用从rank 0收到的num_buckets, bucket_sizes_tensor 和 indices_tensor 更新传进来的参数bucket_indices
for (size_t i = 0; i < num_buckets; i ) {
const auto& bucket_size = bucket_sizes_accessor[i];
std::vector<size_t> bucket;
bucket.reserve(bucket_size);
for (size_t j = 0; j < bucket_size; j ) {
bucket.push_back(indices_accessor[indices_accessor_Index ]);
}
bucket_indices.emplace_back(std::move(bucket));
}
}
3.2.3 初始化桶
同步之后就是初始化桶,本部分代码在前文已经分析过,故此省略。
3.3 准备后向传播
前向传播完成之后,调用 prepare_for_backward 完成了后向传播的准备。
具体大致分为两步:重置,查找未使用的参数。
代码语言:javascript复制void Reducer::prepare_for_backward(
const std::vector<torch::autograd::Variable>& outputs) {
std::lock_guard<std::mutex> lock(mutex_);
// 记录开始时间
cpu_timer_.backward_compute_start_time = current_time_in_nanos();
if (should_collect_runtime_stats()) {
record_backward_compute_start_time();
}
// Reset accounting.
expect_autograd_hooks_ = true;
reset_bucket_counting();
// Reset unused parameter accounting.
has_marked_unused_parameters_ = false;
// Reset per iteration marked ready parameters.
perIterationReadyParams_.clear(); // 重置每次迭代的marked ready parameters
// If static graph is not set, search graph to detect unused parameters.
// When static graph is set, unused_parameters_ will be detected and will
// not change after 1st iteration.
// If static_graph_ = false and find_unused_parameters_ is false,
// we assume that autograd hooks for ALL variables will be called,
// and we don't have to search the autograd graph for presence of these hooks.
if (dynamic_graph_find_unused()) {
unused_parameters_.clear();
search_unused_parameters(outputs); // 查找没有使用的参数
}
}
3.3.1 重置
这里会遍历桶,对于每个桶,重置其副本的pending状态,某一个模型副本pending状态是由这个模型副本中对应桶的变量数目决定。
如果是静态图,则重置numGradHooksTriggeredMapPerIteration_。
代码语言:javascript复制void Reducer::reset_bucket_counting() {
next_bucket_ = 0;
// Reset num_buckets_ready_ at the beginning of backward computation
// in each iteration.
num_buckets_ready_ = 0;
for (auto& bucket : buckets_) { // 遍历桶
for (auto& replica : bucket.replicas) {
replica.pending = replica.variables.size(); //对于每个桶,重置其副本的pending状态,某一个模型副本pending,是由这个模型副本中,本桶的变量数目决定
}
bucket.pending = bucket.replicas.size(); // 重置桶的pending状态,桶pending是由多少个模型副本决定
}
if (static_graph_) {
// 重置numGradHooksTriggeredMapPerIteration_
numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
}
}
3.3.2 查找未使用的参数
search_unused_parameters 完成了 "查找未使用的参数" 功能。
我们首先要看看 Reducer 的 find_unused_parameters_ 成员变量。如果 find_unused_parameters_ 被设置为 true,则 DDP 会在前向传播结束时候,从指定的输出进行回溯,遍历autograd计算图来找到所有没有使用过的参数,并且一一标记为就绪 ready。
对于所有参数,DDP 都有一个指向它们的梯度累积函数的指针,但对于那些autograd图中不存在的参数,它们将在第一次调用autograd钩子时就被标记为准备就绪。
因为模型输出可能会被忽略,所以这个操作不是立即完成的,我们只是像在torch.autograd.backward()
这里开始执行规约操作。
大家可以发现,这么做开销会很大,为什么要这么做?这是因为计算动态图会改变。
- 训练时候,某次迭代可能只用到模型的一个子图,而且因为PyTorch 是动态计算,所以子图会在迭代期间改变,就是说,某些参数可能在下一次迭代训练时候被跳过。
- 同时,因为所有参数在一开始就已经被分好桶,而 hook 又规定了只有整个桶 ready (即,pending == 0)之后才会进行通信,所以如果我们不将未使用参数标记为 ready,整个通信过程就会没法进行。
// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::search_unused_parameters(
const std::vector<torch::autograd::Variable>& outputs) {
std::unordered_set<torch::autograd::Node*> seen;
std::vector<torch::autograd::Node*> queue;
RECORD_FUNCTION(
"torch.distributed.ddp.reducer::search_unused_parameters",
std::vector<c10::IValue>());
// Seed queue with the grad functions of all outputs.
for (const auto& output : outputs) {
const auto& grad_fn = output.grad_fn();
if (grad_fn) {
queue.push_back(grad_fn.get()); // 把所有输出节点的梯度函数插入到queue
}
}
// Traverse the autograd graph starting at the specified output.
// 遍历这个queue中的元素,对于每一个函数,找到其后向图之中的后续边,然后把后续边指向的节点再插入queue,然后继续循环,最终 seen 里面是所有从output出发,所有节点的梯度函数
while (!queue.empty()) {
auto fn = queue.back();
queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) {
queue.push_back(next_ptr);
}
}
}
}
// Find accumulator functions that don't show up in this graph.
// gradAccToVariableMap_ 里面是所有需要被规约的variable
// 遍历gradAccToVariableMap_,如果 seen 之中没有,就说明这个参数没有被使用,插入到unused_parameters_
for (const auto& it : gradAccToVariableMap_) {
// If the accumulator function is present in the graph, we know
// a gradient will be computed for the corresponding parameter.
if (seen.count(it.first) == 0) {
unused_parameters_.push_back(it.second);
}
}
// Warn user about unnecessary perf hit if all parameters were used in
// forward.
if (unused_parameters_.empty()) {
TORCH_WARN_ONCE(
"find_unused_parameters=True was specified in DDP constructor, "
"but did not find any unused parameters in the forward pass. This flag "
"results in an extra traversal of the autograd graph every iteration, "
" which can adversely affect performance. If your model indeed never "
"has any unused parameters in the forward pass, consider turning this "
"flag off. Note that this warning may be a false positive if your model "
"has flow control causing later iterations to have unused parameters.");
}
}
至此,前向传播已经结束,我们得到了如下:
- 需要计算梯度的参数已经分桶。
- 桶已经重建完毕。
- 前向传播已经完成。
- 从指定的输出进行回溯,遍历autograd计算图来找到所有没有使用过的参数,并且一一标记为就绪 ready。
我们在下一篇就分析后向传播。
0xFF 参考
pytorch分布式系列3——分布式训练时,torch.utils.data.distributed.DistributedSampler做了什么?
pytorch分布式系列1——搞清torch.distributed.launch相关的环境变量
pytorch分布式系列2——DistributedDataParallel是如何做同步的?
pytorch(分布式)数据并行个人实践总结——DataParallel/DistributedDataParallel
Pytorch的nn.DataParallel
https://discuss.pytorch.org/t/dataparallel-imbalanced-memory-usage/22551/20
https://pytorch.org/docs/stable/distributed.html
PyTorch 源码解读之分布式训练了解一下?
实操教程|PyTorch AutoGrad C 层实现
PYTORCH 自动微分(一)
PyTorch如何加速数据并行训练?分布式秘籍大揭秘
pytorch分布式训练(二init_process_group)
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/docs/master/notes/ddp.html
https://pytorch.org/tutorials/intermediate/dist_tuto.html
PyTorch 源码解读之 DP & DDP:模型并行和分布式训练解析
Pytorch模型中的parameter与buffer