语音项目中我们通常会使用stft对特征进行提取,很多python库也提供了接口。本文主要介绍使用librosa,torch,以及卷积方式进行stft和istft的运算。
1. stft运算
关于傅里叶变换和逆变换的基础知识在之前文章中已经做过介绍:https://cloud.tencent.com/developer/article/1811451
这里就不再介绍了,下面直接通过代码来得出音频振幅谱和相位谱。
2. librosa接口
librosa提供的接口非常简单,我们通过一个例子进行stft和istft来恢复一段音频
代码语言:javascript复制def test_lib(data):
win_len = 320
win_hop = 160
fft_len = 512
spec = librosa.stft(data, window='hann', win_length=win_len, n_fft=fft_len, hop_length=win_hop,
center=True)
outputs = librosa.istft(spec, window='hann', win_length=win_len, hop_length=win_hop,
center=True)
sf.write('./lib_stft.wav', outputs, 16000)
return outputs
其中librosa_stft是一个复数形式,我们可以获取其中的一些特征,比如
代码语言:javascript复制# 实部
real = np.real(spec)
# 虚部
imag = np.imag(spec)
# 振幅谱
mags = np.sqrt(real ** 2 imag ** 2)
# 相位谱
phase = np.angle(spec)
3. torch接口
同样我们通过一个例子使用torch提供的接口来进行stft和istft恢复一段音频
代码语言:javascript复制def test_torch(inputs):
fft_len=512
win_len=320
len_hop=160
inputs = torch.from_numpy(inputs.reshape(1,-1).astype(np.float32))
window = torch.hann_window(win_len)
spec = torch.stft(inputs, fft_len, len_hop, win_len, window, center=True, return_complex=False)
print("stft out", spec.shape)
out = torch.istft(spec, fft_len, len_hop, win_len, window, True, return_complex=False)
return out
其中spec是一个虚部和实部concatenate一起的,我们同样可以获取其中的一些特征:
代码语言:javascript复制real = spec[:, :, :, 0] # 实部
imag = spec[:, :, :, 1] # 虚部
mags = torch.abs(torch.sqrt(torch.pow(rea, 2) torch.pow(imag, 2)))
phase = torch.atan2(imag.data, real.data)
4. 利用卷积实现stft
python中使用librosa以及pytorch中使用接口都是很常用的特征提取方式,但是有时我们需要将算子移植到终端就比较麻烦,框架通常不直接提供这两个op,所以使用卷积实现stft和istft更容易进行工程移植。
我参考了这里的实现:https://github.com/huyanxin/DeepComplexCRN/blob/master/conv_stft.py
其中在使用test_fft()测试时会提示错误,所以对代码进行了一点修改,其中修改地方添加了注释:
代码语言:javascript复制import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from scipy.signal import get_window
def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
if win_type == 'None' or win_type is None:
window = np.ones(win_len)
else:
window = get_window(win_type, win_len, fftbins=True)#**0.5
N = fft_len
fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
real_kernel = np.real(fourier_basis)
imag_kernel = np.imag(fourier_basis)
kernel = np.concatenate([real_kernel, imag_kernel], 1).T
if invers :
kernel = np.linalg.pinv(kernel).T
kernel = kernel*window
kernel = kernel[:, None, :]
return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None,:,None].astype(np.float32))
class ConvSTFT(nn.Module):
def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real', fix=True):
super(ConvSTFT, self).__init__()
if fft_len == None:
self.fft_len = np.int(2**np.ceil(np.log2(win_len)))
else:
self.fft_len = fft_len
kernel, _ = init_kernels(win_len, win_inc, self.fft_len, win_type)
#self.weight = nn.Parameter(kernel, requires_grad=(not fix))
self.register_buffer('weight', kernel)
self.feature_type = feature_type
self.stride = win_inc
self.win_len = win_len
self.dim = self.fft_len
def forward(self, inputs):
if inputs.dim() == 2:
inputs = torch.unsqueeze(inputs, 1)
# 注意这里pad方式的对齐
inputs = F.pad(inputs, [self.win_len - self.stride, self.win_len - self.stride], mode='reflect')
outputs = F.conv1d(inputs, self.weight, stride=self.stride)
# 前半段系数为实数,后半段系数为虚数
if self.feature_type == 'complex':
return outputs
else:
dim = self.dim//2 1
real = outputs[:, :dim, :]
imag = outputs[:, dim:, :]
mags = torch.sqrt(real**2 imag**2)
phase = torch.atan2(imag, real)
return mags, phase
class ConviSTFT(nn.Module):
def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real', fix=True):
super(ConviSTFT, self).__init__()
if fft_len == None:
self.fft_len = np.int(2**np.ceil(np.log2(win_len)))
else:
self.fft_len = fft_len
kernel, window = init_kernels(win_len, win_inc, self.fft_len, win_type, invers=True)
#self.weight = nn.Parameter(kernel, requires_grad=(not fix))
self.register_buffer('weight', kernel)
self.feature_type = feature_type
self.win_type = win_type
self.win_len = win_len
self.stride = win_inc
self.stride = win_inc
self.dim = self.fft_len
self.register_buffer('window', window)
self.register_buffer('enframe', torch.eye(win_len)[:,None,:])
def forward(self, inputs, phase=None):
"""
inputs : [B, N 2, T] (complex spec) or [B, N//2 1, T] (mags)
phase: [B, N//2 1, T] (if not none)
"""
if phase is not None:
real = inputs*torch.cos(phase)
imag = inputs*torch.sin(phase)
inputs = torch.cat([real, imag], 1)
outputs = F.conv_transpose1d(inputs, self.weight, stride=self.stride)
# this is from torch-stft: https://github.com/pseeth/torch-stft
t = self.window.repeat(1,1,inputs.size(-1))**2
coff = F.conv_transpose1d(t, self.enframe, stride=self.stride)
outputs = outputs/(coff 1e-8)
#outputs = torch.where(coff == 0, outputs, outputs/coff)
outputs = outputs[...,self.win_len-self.stride:-(self.win_len-self.stride)]
return outputs
def test_fft():
torch.manual_seed(20)
win_len = 320
win_inc = 160
fft_len = 512
inputs = torch.randn([1, 1, 16000*4])
fft = ConvSTFT(win_len, win_inc, fft_len, win_type='hanning', feature_type='real')
import librosa
outputs1 = fft(inputs)[0]
outputs1 = outputs1.numpy()[0]
np_inputs = inputs.numpy().reshape([-1])
# center=True, 在input的两侧,分别镜像填充n_fft//2个数据
librosa_stft = librosa.stft(np_inputs, window='hann',win_length=win_len, n_fft=fft_len, hop_length=win_inc, center=True)
print(np.mean((outputs1 - np.abs(librosa_stft))**2))
def test_conv_complex(data):
inputs = data.reshape([1, 1, -1])
N = 320
inc = 160
fft_len = 512
fft = ConvSTFT(N, inc, fft_len=fft_len, win_type='hanning', feature_type='complex')
ifft = ConviSTFT(N, inc, fft_len=fft_len, win_type='hanning', feature_type='complex')
inputs = torch.from_numpy(inputs.astype(np.float32))
outputs1 = fft(inputs)
outputs2 = ifft(outputs1)
sf.write('./conv_stft_complex.wav', outputs2.numpy()[0, 0, :], 16000)
return outputs2.numpy()[0, 0, :]
if __name__ == '__main__':
test_fft()
#test_conv_complex(data)
总结下如果是python项目可以直接使用librosa接口,如果是pytorch项目可以直接使用torch接口,如果是需要模型移植到终端的项目,建议可使用卷积方式方便移植~