Pyecharts绘图API总结

2021-12-02 11:28:02 浏览数 (1)

一、初识Pyecharts

pyecharts简介

pyecharts 是一个用于生成 Echarts 图表的类库, Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

Pyecharts官网

https://pyecharts.org/#/zh-cn/intro

pyecharts安装

代码语言:javascript复制
pip install pyecharts

二、Pyecharts可视化

使用pyecharts可以绘制如下图表:

Scatter

散点图

Funnel

漏斗图

Bar

柱状图

Gauge

仪表盘

Pie

饼图

Graph

关系图

Line

折线/面积图

Liquid

水球图

Radar

雷达图

Parallel

平行坐标系

Sankey

桑基图

Polar

极坐标系

WordCloud

词云图

HeatMap

热力图

这里我们简介一下常用的图表的API:

2.0、初始化设置

导入相关库:

代码语言:javascript复制
from pyecharts.charts import *
import pyecharts.options as opts
  • from pyecharts.charts import *: 可以使用所有的图表对应的函数;
  • 使用 options 配置项,在 pyecharts 中,一切皆 Options,进行参数设置;

总体说明一下:

  1. .render_notebook ()随时随地渲染图表;
  2. .render() 这个不会直接产生图表,而是形成一个render.html的文件,可在浏览器中打开查看图表;
2.1、scatter()

这里我们绘制一个正余弦的散点图

代码语言:javascript复制
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)
y2 = np.cos(x)

# 参数设置
(Scatter() # 图形种类
 .add_xaxis(xaxis_data=x) # 设置x轴序列
 .add_yaxis(series_name='sin', y_axis=y) # 设置y轴序列
 .add_yaxis(series_name='cos', y_axis=y2, label_opts=opts.LabelOpts(is_show=False)) # is_show = False:表示不显示数值部分
).render_notebook()

结果如下:

2.2、line()
代码语言:javascript复制
from pyecharts.charts import Line
import pyecharts.options as opts

x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)

(
    Line()
    .add_xaxis(xaxis_data=x)
    .add_yaxis(series_name='sin', y_axis=y, label_opts=opts.LabelOpts(is_show=False))
    .add_yaxis(series_name='cos', y_axis=np.cos(x), label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title='曲线'),
                     tooltip_opts=opts.TooltipOpts(axis_pointer_type='cross')
                    )
).render_notebook()

结果如下所示:

2.3、Bar()

柱状图的绘制:

代码语言:javascript复制
from pyecharts.charts import Bar

bar = (
    Bar()
    .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
bar.render_notebook()

结果如下:

当然,这里只是最基本的柱图使用;我们还可以绘制混合柱图;

代码语言:javascript复制
from pyecharts.charts import Bar
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
num2 = [90, 110, 101, 70, 90, 120, 99]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Bar(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add_xaxis(xaxis_data=lab)
    .add_yaxis(series_name='商家A', yaxis_data=num)
    .add_yaxis(series_name='商家B', yaxis_data=num2)
    .set_global_opts(
        title_opts=opts.TitleOpts(title='各商家拥有犬类数量情况', subtitle='如有雷同,纯属意外')
    )
).render_notebook()

结果如下所示:

2.4、Pie()

普通饼图:

代码语言:javascript复制
from pyecharts.charts import Pie
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Pie(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add(series_name='', 
         data_pair=[(j, i) for i, j in zip(num, lab)]
        )
).render_notebook()

结果如下:

环状饼图:

代码语言:javascript复制
from pyecharts.charts import Pie
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Pie(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add(series_name='', 
         radius=['40%', '75%'],
         data_pair=[(j, i) for i, j in zip(num, lab)]
        )
).render_notebook()

如图所示:

玫瑰饼图:

代码语言:javascript复制
from pyecharts.charts import Pie
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Pie(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add(series_name='', 
#          radius=['40%', '75%'],
#          center=['25%', '50%'],
         rosetype='radius',
         data_pair=[(j, i) for i, j in zip(num, lab)]
        )
).render_notebook()

如图所示:

2.5、图表的组合使用
代码语言:javascript复制
from pyecharts.charts import Bar, Line

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

bar = (
    Bar(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add_xaxis(xaxis_data=lab)
    .add_yaxis(series_name='', yaxis_data=num)
)

lines = (
    Line()
    .add_xaxis(xaxis_data=lab)
    .add_yaxis(series_name='', y_axis=num, label_opts=opts.LabelOpts(is_show=False))
)

bar.overlap(lines).render_notebook()

如图所示:

三、总结

Pyecharts可以绘制各种各样的图表,主流的一个数据可视化的库,因为相对于matplotlib,seaborn等数据可视化库,它的交互性比较好,图形绘制的比较清晰美观,所以应用的比较广泛,本文主要就普通常用图形做了简单的总结,当然它还可以绘制地理图形,具体参见官网相关API。

0 人点赞