文章大纲
- spark 中的标准化
- Standardizes
- 源代码
- 参考文献
spark 中的标准化
Standardizes
Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.
The “unit std” is computed using the corrected sample standard deviation, which is computed as the square root of the unbiased sample variance.
代码:
- https://github.com/apache/spark/blob/v3.1.2/mllib/src/main/scala/org/apache/spark/ml/feature/StandardScaler.scala
源代码
代码语言:javascript复制package org.apache.spark.ml.feature
import org.apache.hadoop.fs.Path
import org.apache.spark.annotation.Since
import org.apache.spark.ml._
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.stat.Summarizer
import org.apache.spark.ml.util._
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructField, StructType}
/**
* Params for [[StandardScaler]] and [[StandardScalerModel]].
*/
private[feature] trait StandardScalerParams extends Params with HasInputCol with HasOutputCol {
/**
* Whether to center the data with mean before scaling.
* It will build a dense output, so take care when applying to sparse input.
* Default: false
* @group param
*/
val withMean: BooleanParam = new BooleanParam(this, "withMean",
"Whether to center data with mean")
/** @group getParam */
def getWithMean: Boolean = $(withMean)
/**
* Whether to scale the data to unit standard deviation.
* Default: true
* @group param
*/
val withStd: BooleanParam = new BooleanParam(this, "withStd",
"Whether to scale the data to unit standard deviation")
/** @group getParam */
def getWithStd: Boolean = $(withStd)
/** Validates and transforms the input schema. */
protected def validateAndTransformSchema(schema: StructType): StructType = {
SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
require(!schema.fieldNames.contains($(outputCol)),
s"Output column ${$(outputCol)} already exists.")
val outputFields = schema.fields : StructField($(outputCol), new VectorUDT, false)
StructType(outputFields)
}
setDefault(withMean -> false, withStd -> true)
}
/**
* Standardizes features by removing the mean and scaling to unit variance using column summary
* statistics on the samples in the training set.
*
* The "unit std" is computed using the
* <a href="https://en.wikipedia.org/wiki/Standard_deviation#Corrected_sample_standard_deviation">
* corrected sample standard deviation</a>,
* which is computed as the square root of the unbiased sample variance.
*/
@Since("1.2.0")
class StandardScaler @Since("1.4.0") (
@Since("1.4.0") override val uid: String)
extends Estimator[StandardScalerModel] with StandardScalerParams with DefaultParamsWritable {
@Since("1.2.0")
def this() = this(Identifiable.randomUID("stdScal"))
/** @group setParam */
@Since("1.2.0")
def setInputCol(value: String): this.type = set(inputCol, value)
/** @group setParam */
@Since("1.2.0")
def setOutputCol(value: String): this.type = set(outputCol, value)
/** @group setParam */
@Since("1.4.0")
def setWithMean(value: Boolean): this.type = set(withMean, value)
/** @group setParam */
@Since("1.4.0")
def setWithStd(value: Boolean): this.type = set(withStd, value)
@Since("2.0.0")
override def fit(dataset: Dataset[_]): StandardScalerModel = {
transformSchema(dataset.schema, logging = true)
val Row(mean: Vector, std: Vector) = dataset
.select(Summarizer.metrics("mean", "std").summary(col($(inputCol))).as("summary"))
.select("summary.mean", "summary.std")
.first()
copyValues(new StandardScalerModel(uid, std.compressed, mean.compressed).setParent(this))
}
@Since("1.4.0")
override def transformSchema(schema: StructType): StructType = {
validateAndTransformSchema(schema)
}
@Since("1.4.1")
override def copy(extra: ParamMap): StandardScaler = defaultCopy(extra)
}
@Since("1.6.0")
object StandardScaler extends DefaultParamsReadable[StandardScaler] {
@Since("1.6.0")
override def load(path: String): StandardScaler = super.load(path)
}
/**
* Model fitted by [[StandardScaler]].
*
* @param std Standard deviation of the StandardScalerModel
* @param mean Mean of the StandardScalerModel
*/
@Since("1.2.0")
class StandardScalerModel private[ml] (
@Since("1.4.0") override val uid: String,
@Since("2.0.0") val std: Vector,
@Since("2.0.0") val mean: Vector)
extends Model[StandardScalerModel] with StandardScalerParams with MLWritable {
import StandardScalerModel._
/** @group setParam */
@Since("1.2.0")
def setInputCol(value: String): this.type = set(inputCol, value)
/** @group setParam */
@Since("1.2.0")
def setOutputCol(value: String): this.type = set(outputCol, value)
@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
val outputSchema = transformSchema(dataset.schema, logging = true)
val shift = if ($(withMean)) mean.toArray else Array.emptyDoubleArray
val scale = if ($(withStd)) {
std.toArray.map { v => if (v == 0) 0.0 else 1.0 / v }
} else Array.emptyDoubleArray
val func = getTransformFunc(shift, scale, $(withMean), $(withStd))
val transformer = udf(func)
dataset.withColumn($(outputCol), transformer(col($(inputCol))),
outputSchema($(outputCol)).metadata)
}
@Since("1.4.0")
override def transformSchema(schema: StructType): StructType = {
var outputSchema = validateAndTransformSchema(schema)
if ($(outputCol).nonEmpty) {
outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
$(outputCol), mean.size)
}
outputSchema
}
@Since("1.4.1")
override def copy(extra: ParamMap): StandardScalerModel = {
val copied = new StandardScalerModel(uid, std, mean)
copyValues(copied, extra).setParent(parent)
}
@Since("1.6.0")
override def write: MLWriter = new StandardScalerModelWriter(this)
@Since("3.0.0")
override def toString: String = {
s"StandardScalerModel: uid=$uid, numFeatures=${mean.size}, withMean=${$(withMean)}, "
s"withStd=${$(withStd)}"
}
}
@Since("1.6.0")
object StandardScalerModel extends MLReadable[StandardScalerModel] {
private[StandardScalerModel]
class StandardScalerModelWriter(instance: StandardScalerModel) extends MLWriter {
private case class Data(std: Vector, mean: Vector)
override protected def saveImpl(path: String): Unit = {
DefaultParamsWriter.saveMetadata(instance, path, sc)
val data = Data(instance.std, instance.mean)
val dataPath = new Path(path, "data").toString
sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
}
}
private class StandardScalerModelReader extends MLReader[StandardScalerModel] {
private val className = classOf[StandardScalerModel].getName
override def load(path: String): StandardScalerModel = {
val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
val dataPath = new Path(path, "data").toString
val data = sparkSession.read.parquet(dataPath)
val Row(std: Vector, mean: Vector) = MLUtils.convertVectorColumnsToML(data, "std", "mean")
.select("std", "mean")
.head()
val model = new StandardScalerModel(metadata.uid, std, mean)
metadata.getAndSetParams(model)
model
}
}
@Since("1.6.0")
override def read: MLReader[StandardScalerModel] = new StandardScalerModelReader
@Since("1.6.0")
override def load(path: String): StandardScalerModel = super.load(path)
private[spark] def transformWithBoth(
shift: Array[Double],
scale: Array[Double],
values: Array[Double]): Array[Double] = {
var i = 0
while (i < values.length) {
values(i) = (values(i) - shift(i)) * scale(i)
i = 1
}
values
}
private[spark] def transformWithShift(
shift: Array[Double],
values: Array[Double]): Array[Double] = {
var i = 0
while (i < values.length) {
values(i) -= shift(i)
i = 1
}
values
}
private[spark] def transformDenseWithScale(
scale: Array[Double],
values: Array[Double]): Array[Double] = {
var i = 0
while (i < values.length) {
values(i) *= scale(i)
i = 1
}
values
}
private[spark] def transformSparseWithScale(
scale: Array[Double],
indices: Array[Int],
values: Array[Double]): Array[Double] = {
var i = 0
while (i < values.length) {
values(i) *= scale(indices(i))
i = 1
}
values
}
private[spark] def getTransformFunc(
shift: Array[Double],
scale: Array[Double],
withShift: Boolean,
withScale: Boolean): Vector => Vector = {
(withShift, withScale) match {
case (true, true) =>
vector: Vector =>
val values = vector match {
case d: DenseVector => d.values.clone()
case v: Vector => v.toArray
}
val newValues = transformWithBoth(shift, scale, values)
Vectors.dense(newValues)
case (true, false) =>
vector: Vector =>
val values = vector match {
case d: DenseVector => d.values.clone()
case v: Vector => v.toArray
}
val newValues = transformWithShift(shift, values)
Vectors.dense(newValues)
case (false, true) =>
vector: Vector =>
vector match {
case DenseVector(values) =>
val newValues = transformDenseWithScale(scale, values.clone())
Vectors.dense(newValues)
case SparseVector(size, indices, values) =>
val newValues = transformSparseWithScale(scale, indices, values.clone())
Vectors.sparse(size, indices, newValues)
case v =>
throw new IllegalArgumentException(s"Unknown vector type ${v.getClass}.")
}
case (false, false) =>
vector: Vector => vector
}
}
}
参考文献
系列文章:
- 正则化、标准化、归一化基本概念简介
- spark 中的正则化
- spark 中的标准化
- spark 中的归一化
- 扩展spark 的归一化函数
spark 中的 特征相关内容处理的文档
- http://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/feature/index.html
概念简介
- https://blog.csdn.net/u014381464/article/details/81101551
参考:
- https://segmentfault.com/a/1190000014042959
- https://www.cnblogs.com/nucdy/p/7994542.html
- https://blog.csdn.net/weixin_34117522/article/details/88875270
- https://blog.csdn.net/xuejianbest/article/details/85779029