PTA 1079 延迟的回文数 (20 分)

2021-12-06 19:23:17 浏览数 (1)

题目

给定一个 k 1 位的正整数 N,写成 a k

⋯a 1

a 0

的形式,其中对所有 i 有 0≤a i

<10 且 a k

0。N 被称为一个回文数,当且仅当对所有 i 有 a i

=a k−i

。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式: 输入在一行中给出一个不超过1000位的正整数。

输出格式: 对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A B = C 其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。

代码语言:javascript复制
输入样例 1:
97152
结尾无空行
输出样例 1:
97152   25179 = 122331
122331   133221 = 255552
255552 is a palindromic number.
结尾无空行
输入样例 2:
196
结尾无空行
输出样例 2:
196   691 = 887
887   788 = 1675
1675   5761 = 7436
7436   6347 = 13783
13783   38731 = 52514
52514   41525 = 94039
94039   93049 = 187088
187088   880781 = 1067869
1067869   9687601 = 10755470
10755470   07455701 = 18211171
Not found in 10 iterations.
结尾无空行

解题思路

代码语言:javascript复制
def checkIsHuiwen(num: int) -> bool:
    numStr = str(num)
    for i in range(len(numStr)//2):
        # print(str(numStr[i])   " "   str(numStr[len(numStr)-1-i]))
        if numStr[i] != numStr[len(numStr)-1-i]:
            return False
    return True
inputStr = str(input())
# inputStr = str(101)
res = inputStr
hasRes = False
for i in range(10):
    if checkIsHuiwen(int(res)):
        print(res   " is a palindromic number.")
        hasRes = True
        break
    else :
        num1 = int(res)
        num2 = int(res[::-1])
        resNum = num1   num2
        print(str(num1)   "   "   str(num2)   " = "   str(resNum))
        res = str(resNum)

if hasRes == False:
    print("Not found in 10 iterations.")

0 人点赞