本栏目大数据开发岗高频面试题主要出自
大数据技术
专栏的各个小专栏,由于个别笔记上传太早,排版杂乱,后面会进行原文美化、增加。
文章目录- 面试题 01、为什么要进行序列化序列化?
- 面试题02、Yarn中的container是由谁负责销毁的,在Hadoop Mapreduce中container可以复用么?
- 面试题03、不启动Spark集群Master和work服务,可不可以运行Spark程序?
- 面试题04、 RDD通过Linage(记录数据更新)的方式为何很高效?
- 面试题05、spark on yarn Cluster 模式下,ApplicationMaster和driver是在同一个进程么?
- 总结
停不要往下滑了,
默默想5min,
看看这5道面试题你都会吗?
代码语言:javascript复制面试题 01、Spark on Mesos中,什么是的粗粒度分配,什么是细粒度分配,各自的优点和缺点是什么?
面试题02、driver的功能是什么?
面试题 03、Spark技术栈有哪些组件,每个组件都有什么功能,适合什么应用场景?
面试题04、Spark中Worker的主要工作是什么?
面试题05、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别?
以下答案仅供参考:
面试题 01、为什么要进行序列化序列化?
可以减少数据的体积,减少存储空间,高效存储和传输数据,不好的是使用的时候要反序列化,非常消耗CPU。 配,用完了就立即回收资源,启动会麻烦一点,启动一次分配一次,会比较麻烦。
面试题02、Yarn中的container是由谁负责销毁的,在Hadoop Mapreduce中container可以复用么?
ApplicationMaster负责销毁,在Hadoop Mapreduce不可以复用,在spark on yarn程序container可以复用。
面试题03、不启动Spark集群Master和work服务,可不可以运行Spark程序?
可以,只要资源管理器第三方管理就可以,如由yarn管理,spark集群不启动也可以使用spark;spark集群启动的是work和master,这个其实就是资源管理框架, yarn中的resourceManager相当于master,NodeManager相当于worker,做计算是Executor,和spark集群的work和manager可以没关系,归根接底还是JVM的运行, 只要所在的JVM上安装了spark就可以。
面试题04、 RDD通过Linage(记录数据更新)的方式为何很高效?
1)lazy记录了数据的来源,RDD是不可变的,且是lazy级别的,且RDD之间构成了链条,lazy是弹性的基石。由于RDD不可变,所以每次操作就产生新的rdd, 不存在全局修改的问题,控制难度下降,所有有计算链条将复杂计算链条存储下来,计算的时候从后往前回溯 900步是上一个stage的结束,要么就checkpoint。 2)记录原数据,是每次修改都记录,代价很大如果修改一个集合,代价就很小,官方说rdd是粗粒度的操作,是为了效率,为了简化,每次都是操作数据集合, 写或者修改操作,都是基于集合的rdd的写操作是粗粒度的,rdd的读操作既可以是粗粒度的也可以是细粒度,读可以读其中的一条条的记录。 3)简化复杂度,是高效率的一方面,写的粗粒度限制了使用场景如网络爬虫,现实世界中,大多数写是粗粒度的场景。
面试题05、spark on yarn Cluster 模式下,ApplicationMaster和driver是在同一个进程么?
是,driver 位于ApplicationMaster进程中。该进程负责申请资源,还负责监控程序、资源的动态情况。
总结
今天我们复习了面试中常考的Spark相关的五个问题,你做到心中有数了么?