zk---分布式锁
- 什么是分布式锁
- 原生 Zookeeper 实现分布式锁案例
- 1)分布式锁实现
- 2)分布式锁测试
- Curator 框架实现分布式锁案例
- 1)原生的 Java API 开发存在的问题
- 2)Curator 是一个专门解决分布式锁的框架,解决了原生 JavaAPI 开发分布式遇到的问题。
- 3)Curator 案例实操
- (1)添加依赖
- (2)代码实现
- (3)观察控制台变化:
- zk知识重点总结
- 1.选举机制
- 2.生产集群安装多少 zk 合适?
- 3.常用命令
什么是分布式锁
比如说"进程 1"在使用该资源的时候,会先去获得锁,"进程 1"获得锁以后会对该资源保持独占,这样其他进程就无法访问该资源,"进程 1"用完该资源以后就将锁释放掉,让其他进程来获得锁,那么通过这个锁机制,我们就能保证了分布式系统中多个进程能够有序的访问该临界资源。那么我们把这个分布式环境下的这个锁叫作分布式锁。
ZK实现分布式锁具体实现流程可以参考这篇文章
原生 Zookeeper 实现分布式锁案例
1)分布式锁实现
代码语言:javascript复制//通过CountDownLatch的计数器机制实现分布式锁
public class DistributedLock {
// zookeeper server 列表
private String connectString =
"hadoop102:2181,hadoop103:2181,hadoop104:2181";
// 超时时间
private int sessionTimeout = 2000;
private ZooKeeper zk;
//根节点
private String rootNode = "locks";
//根节点下面子节点
private String subNode = "seq-";
// 当前 client 等待的子节点的有序序号
private String waitPath;
//ZooKeeper 连接
private CountDownLatch connectLatch = new CountDownLatch(1);
//ZooKeeper 节点等待
private CountDownLatch waitLatch = new CountDownLatch(1);
// 当前 client 创建的子节点
private String currentNode;
// 和 zk 服务建立连接,并创建根节点
public DistributedLock() throws IOException,
InterruptedException, KeeperException {
zk = new ZooKeeper(connectString, sessionTimeout, new
Watcher() {
@Override
public void process(WatchedEvent event) {
// 连接建立时, 打开 latch, 唤醒 wait 在该 latch 上的线程
if (event.getState() ==
Event.KeeperState.SyncConnected) {
connectLatch.countDown();
}
// 发生了 waitPath 的删除事件
if (event.getType() ==
Event.EventType.NodeDeleted && event.getPath().equals(waitPath)) {
waitLatch.countDown();
}
}
});
// 等待连接建立
connectLatch.await();
//获取根节点状态
Stat stat = zk.exists("/" rootNode, false);
//如果根节点不存在,则创建根节点,根节点类型为永久节点
if (stat == null) {
System.out.println("根节点不存在");
zk.create("/" rootNode, new byte[0],
ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}
}
// 加锁方法
public void zkLock() {
try {
//在根节点下创建临时顺序节点,返回值为创建的节点路径
currentNode = zk.create("/" rootNode "/" subNode,
null, ZooDefs.Ids.OPEN_ACL_UNSAFE,
CreateMode.EPHEMERAL_SEQUENTIAL);
// wait 一小会, 让结果更清晰一些
Thread.sleep(10);
// 注意, 没有必要监听"/locks"的子节点的变化情况
List<String> childrenNodes = zk.getChildren("/"
rootNode, false);
// 列表中只有一个子节点, 那肯定就是 currentNode , 说明client 获得锁
if (childrenNodes.size() == 1) {
return;
} else {
//对根节点下的所有临时顺序节点进行从小到大排序
Collections.sort(childrenNodes);
//当前节点名称
String thisNode = currentNode.substring(("/"
rootNode "/").length());
//获取当前节点的位置
int index = childrenNodes.indexOf(thisNode);
if (index == -1) {
System.out.println("数据异常");
} else if (index == 0) {
// index == 0, 说明 thisNode 在列表中最小, 当前client 获得锁
return;
} else {
// 获得排名比 currentNode 前 1 位的节点
this.waitPath = "/" rootNode "/"
childrenNodes.get(index - 1);
// 在 waitPath 上注册监听器, 当 waitPath 被删除时,zookeeper 会回调监听器的 process 方法
zk.getData(waitPath, true, new Stat());
//进入等待锁状态
waitLatch.await();
return;
}
}
} catch (KeeperException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// 解锁方法
public void zkUnlock() {
try {
zk.delete(this.currentNode, -1);
} catch (InterruptedException | KeeperException e) {
e.printStackTrace();
}
}
}
2)分布式锁测试
(1)创建两个线程
代码语言:javascript复制public class DistributedLockTest {
public static void main(String[] args) throws
InterruptedException, IOException, KeeperException {
// 创建分布式锁 1
final DistributedLock lock1 = new DistributedLock();
// 创建分布式锁 2
final DistributedLock lock2 = new DistributedLock();
new Thread(new Runnable() {
@Override
public void run() {
// 获取锁对象
try {
lock1.zkLock();
System.out.println("线程 1 获取锁");
Thread.sleep(5 * 1000);
lock1.zkUnlock();
System.out.println("线程 1 释放锁");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
// 获取锁对象
try {
lock2.zkLock();
System.out.println("线程 2 获取锁");
Thread.sleep(5 * 1000);
lock2.zkUnlock();
System.out.println("线程 2 释放锁");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
} }
(2)观察控制台变化:
代码语言:javascript复制线程 1 获取锁
线程 1 释放锁
线程 2 获取锁
线程 2 释放锁
Curator 框架实现分布式锁案例
1)原生的 Java API 开发存在的问题
(1)会话连接是异步的,需要自己去处理。比如使用 CountDownLatch
(2)Watch 需要重复注册,不然就不能生效
(3)开发的复杂性还是比较高的
(4)不支持多节点删除和创建。需要自己去递归
2)Curator 是一个专门解决分布式锁的框架,解决了原生 JavaAPI 开发分布式遇到的问题。
详情请查看官方文档:https://curator.apache.org/index.html
3)Curator 案例实操
(1)添加依赖
代码语言:javascript复制<dependency>
<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version>4.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>4.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.curator</groupId>
<artifactId>curator-client</artifactId>
<version>4.3.0</version>
</dependency>
(2)代码实现
代码语言:javascript复制public class CuratorLockTest {
private String rootNode = "/locks";
// zookeeper server 列表
private String connectString =
"hadoop102:2181,hadoop103:2181,hadoop104:2181";
// connection 超时时间
private int connectionTimeout = 2000;
// session 超时时间
private int sessionTimeout = 2000;
public static void main(String[] args) {
new CuratorLockTest().test();
}
// 测试
private void test() {
// 创建分布式锁 1
final InterProcessLock lock1 = new
InterProcessMutex(getCuratorFramework(), rootNode);
// 创建分布式锁 2
final InterProcessLock lock2 = new
InterProcessMutex(getCuratorFramework(), rootNode);
new Thread(new Runnable() {
@Override
public void run() {
// 获取锁对象
try {
lock1.acquire();
System.out.println("线程 1 获取锁");
// 测试锁重入
lock1.acquire();
System.out.println("线程 1 再次获取锁");
Thread.sleep(5 * 1000);
lock1.release();
System.out.println("线程 1 释放锁");
lock1.release();
System.out.println("线程 1 再次释放锁");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
// 获取锁对象
try {
lock2.acquire();
System.out.println("线程 2 获取锁");
// 测试锁重入
lock2.acquire();
System.out.println("线程 2 再次获取锁");
Thread.sleep(5 * 1000);
lock2.release();
System.out.println("线程 2 释放锁");
lock2.release();
System.out.println("线程 2 再次释放锁");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
}
// 分布式锁初始化
public CuratorFramework getCuratorFramework (){
//重试策略,初试时间 3 秒,重试 3 次
RetryPolicy policy = new ExponentialBackoffRetry(3000, 3);
//通过工厂创建 Curator
CuratorFramework client =
CuratorFrameworkFactory.builder()
.connectString(connectString)
.connectionTimeoutMs(connectionTimeout)
.sessionTimeoutMs(sessionTimeout)
.retryPolicy(policy).build();
//开启连接
client.start();
System.out.println("zookeeper 初始化完成...");
return client;
} }
(3)观察控制台变化:
线程 1 获取锁 线程 1 再次获取锁 线程 1 释放锁 线程 1 再次释放锁 线程 2 获取锁 线程 2 再次获取锁 线程 2 释放锁 线程 2 再次释放锁
zk知识重点总结
1.选举机制
半数机制,超过半数的投票通过,即通过。
(1)第一次启动选举规则:
投票过半数时,服务器 id 大的胜出
(2)第二次启动选举规则:
①EPOCH 大的直接胜出
②EPOCH 相同,事务 id 大的胜出
③事务 id 相同,服务器 id 大的胜出
2.生产集群安装多少 zk 合适?
安装奇数台。
生产经验:
⚫ 10 台服务器:3 台 zk; ⚫ 20 台服务器:5 台 zk; ⚫ 100 台服务器:11 台 zk; ⚫ 200 台服务器:11 台 zk
服务器台数多:好处,提高可靠性;坏处:提高通信延时
3.常用命令
ls、get、create、delete