【愚公系列】2021年12月 攻防世界-进阶题-MISC-071(4-1)

2021-12-09 19:49:23 浏览数 (2)

文章目录

  • 一、4-1
  • 二、答题步骤
    • 1.binwalk
    • 2.盲水印
  • 总结

一、4-1

题目链接:https://adworld.xctf.org.cn/task/task_list?type=misc&number=1&grade=1&page=4

二、答题步骤

1.binwalk

输入如下命令

代码语言:javascript复制
binwalk -e 画风不一样的喵.png

提取文件

发现两张图片

2.盲水印

盲水印脚本bwm.py

代码语言:javascript复制
#!/usr/bin/env python
# -*- coding: utf8 -*-

import sys
import random

cmd = None
debug = False
seed = 20160930
oldseed = False
alpha = 3.0

if __name__ == '__main__':
    if '-h' in sys.argv or '--help' in sys.argv or len(sys.argv) < 2:
        print ('Usage: python bwm.py <cmd> [arg...] [opts...]')
        print ('  cmds:')
        print ('    encode <image> <watermark> <image(encoded)>')
        print ('           image   watermark -> image(encoded)')
        print ('    decode <image> <image(encoded)> <watermark>')
        print ('           image   image(encoded) -> watermark')
        print ('  opts:')
        print ('    --debug,          Show debug')
        print ('    --seed <int>,     Manual setting random seed (default is 20160930)')
        print ('    --oldseed         Use python2 random algorithm.')
        print ('    --alpha <float>,  Manual setting alpha (default is 3.0)')
        sys.exit(1)
    cmd = sys.argv[1]
    if cmd != 'encode' and cmd != 'decode':
        print ('Wrong cmd %s' % cmd)
        sys.exit(1)
    if '--debug' in sys.argv:
        debug = True
        del sys.argv[sys.argv.index('--debug')]
    if '--seed' in sys.argv:
        p = sys.argv.index('--seed')
        if len(sys.argv) <= p 1:
            print ('Missing <int> for --seed')
            sys.exit(1)
        seed = int(sys.argv[p 1])
        del sys.argv[p 1]
        del sys.argv[p]
    if '--oldseed' in sys.argv:
        oldseed = True
        del sys.argv[sys.argv.index('--oldseed')]
    if '--alpha' in sys.argv:
        p = sys.argv.index('--alpha')
        if len(sys.argv) <= p 1:
            print ('Missing <float> for --alpha')
            sys.exit(1)
        alpha = float(sys.argv[p 1])
        del sys.argv[p 1]
        del sys.argv[p]
    if len(sys.argv) < 5:
        print ('Missing arg...')
        sys.exit(1)
    fn1 = sys.argv[2]
    fn2 = sys.argv[3]
    fn3 = sys.argv[4]

import cv2
import numpy as np
import matplotlib.pyplot as plt

# OpenCV是以(BGR)的顺序存储图像数据的
# 而Matplotlib是以(RGB)的顺序显示图像的
def bgr_to_rgb(img):
    b, g, r = cv2.split(img)
    return cv2.merge([r, g, b])

if cmd == 'encode':
    print ('image<%s>   watermark<%s> -> image(encoded)<%s>' % (fn1, fn2, fn3))
    img = cv2.imread(fn1)
    wm = cv2.imread(fn2)

    if debug:
        plt.subplot(231), plt.imshow(bgr_to_rgb(img)), plt.title('image')
        plt.xticks([]), plt.yticks([])
        plt.subplot(234), plt.imshow(bgr_to_rgb(wm)), plt.title('watermark')
        plt.xticks([]), plt.yticks([])

    # print img.shape # 高, 宽, 通道
    h, w = img.shape[0], img.shape[1]
    hwm = np.zeros((int(h * 0.5), w, img.shape[2]))
    assert hwm.shape[0] > wm.shape[0]
    assert hwm.shape[1] > wm.shape[1]
    hwm2 = np.copy(hwm)
    for i in range(wm.shape[0]):
        for j in range(wm.shape[1]):
            hwm2[i][j] = wm[i][j]

    if oldseed: random.seed(seed,version=1)
    else: random.seed(seed)
    m, n = list(range(hwm.shape[0])), list(range(hwm.shape[1]))
    if oldseed:
        random.shuffle(m,random=random.random)
        random.shuffle(n,random=random.random)
    else:
        random.shuffle(m)
        random.shuffle(n)

    for i in range(hwm.shape[0]):
        for j in range(hwm.shape[1]):
            hwm[i][j] = hwm2[m[i]][n[j]]

    rwm = np.zeros(img.shape)
    for i in range(hwm.shape[0]):
        for j in range(hwm.shape[1]):
            rwm[i][j] = hwm[i][j]
            rwm[rwm.shape[0] - i - 1][rwm.shape[1] - j - 1] = hwm[i][j]

    if debug:
        plt.subplot(235), plt.imshow(bgr_to_rgb(rwm)), 
            plt.title('encrypted(watermark)')
        plt.xticks([]), plt.yticks([])

    f1 = np.fft.fft2(img)
    f2 = f1   alpha * rwm
    _img = np.fft.ifft2(f2)

    if debug:
        plt.subplot(232), plt.imshow(bgr_to_rgb(np.real(f1))), 
            plt.title('fft(image)')
        plt.xticks([]), plt.yticks([])

    img_wm = np.real(_img)

    assert cv2.imwrite(fn3, img_wm, [int(cv2.IMWRITE_JPEG_QUALITY), 100])

    # 这里计算下保存前后的(溢出)误差
    img_wm2 = cv2.imread(fn3)
    sum = 0
    for i in range(img_wm.shape[0]):
        for j in range(img_wm.shape[1]):
            for k in range(img_wm.shape[2]):
                sum  = np.power(img_wm[i][j][k] - img_wm2[i][j][k], 2)
    miss = np.sqrt(sum) / (img_wm.shape[0] * img_wm.shape[1] * img_wm.shape[2]) * 100
    print ('Miss %s%% in save' % miss)

    if debug:
        plt.subplot(233), plt.imshow(bgr_to_rgb(np.uint8(img_wm))), 
            plt.title('image(encoded)')
        plt.xticks([]), plt.yticks([])

    f2 = np.fft.fft2(img_wm)
    rwm = (f2 - f1) / alpha
    rwm = np.real(rwm)

    wm = np.zeros(rwm.shape)
    for i in range(int(rwm.shape[0] * 0.5)):
        for j in range(rwm.shape[1]):
            wm[m[i]][n[j]] = np.uint8(rwm[i][j])
    for i in range(int(rwm.shape[0] * 0.5)):
        for j in range(rwm.shape[1]):
            wm[rwm.shape[0] - i - 1][rwm.shape[1] - j - 1] = wm[i][j]

    if debug:
        assert cv2.imwrite('_bwm.debug.wm.jpg', wm)
        plt.subplot(236), plt.imshow(bgr_to_rgb(wm)), plt.title(u'watermark')
        plt.xticks([]), plt.yticks([])

    if debug:
        plt.show()

elif cmd == 'decode':
    print ('image<%s>   image(encoded)<%s> -> watermark<%s>' % (fn1, fn2, fn3))
    img = cv2.imread(fn1)
    img_wm = cv2.imread(fn2)

    if debug:
        plt.subplot(231), plt.imshow(bgr_to_rgb(img)), plt.title('image')
        plt.xticks([]), plt.yticks([])
        plt.subplot(234), plt.imshow(bgr_to_rgb(img_wm)), plt.title('image(encoded)')
        plt.xticks([]), plt.yticks([])

    if oldseed: random.seed(seed,version=1)
    else: random.seed(seed)
    m, n = list(range(int(img.shape[0] * 0.5))), list(range(img.shape[1]))
    if oldseed:
        random.shuffle(m,random=random.random)
        random.shuffle(n,random=random.random)
    else:
        random.shuffle(m)
        random.shuffle(n)

    f1 = np.fft.fft2(img)
    f2 = np.fft.fft2(img_wm)

    if debug:
        plt.subplot(232), plt.imshow(bgr_to_rgb(np.real(f1))), 
            plt.title('fft(image)')
        plt.xticks([]), plt.yticks([])
        plt.subplot(235), plt.imshow(bgr_to_rgb(np.real(f1))), 
            plt.title('fft(image(encoded))')
        plt.xticks([]), plt.yticks([])

    rwm = (f2 - f1) / alpha
    rwm = np.real(rwm)

    if debug:
        plt.subplot(233), plt.imshow(bgr_to_rgb(rwm)), 
            plt.title('encrypted(watermark)')
        plt.xticks([]), plt.yticks([])

    wm = np.zeros(rwm.shape)
    for i in range(int(rwm.shape[0] * 0.5)):
        for j in range(rwm.shape[1]):
            wm[m[i]][n[j]] = np.uint8(rwm[i][j])
    for i in range(int(rwm.shape[0] * 0.5)):
        for j in range(rwm.shape[1]):
            wm[rwm.shape[0] - i - 1][rwm.shape[1] - j - 1] = wm[i][j]
    assert cv2.imwrite(fn3, wm)

    if debug:
        plt.subplot(236), plt.imshow(bgr_to_rgb(wm)), plt.title(u'watermark')
        plt.xticks([]), plt.yticks([])

    if debug:
        plt.show()

保存requirements.txt文件

代码语言:javascript复制
opencv-python==4.2.0.34
matplotlib==2.1.1

执行命令安装对应包

代码语言:javascript复制
pip install -r requirements.txt

提取图中的盲水印

代码语言:javascript复制
python bwm.py decode day1.png day2.png day3.png --oldseed

Flag:wdflag{My_c4t_Ho}

总结

  • binwalk
  • 盲水印

数字水印(Digital Watermark)一种应用计算机算法嵌入载体文件的保护信息。数字水印技术,是一种基于内容的、非密码机制的计算机信息隐藏技术。它是将一些标识信息(即数字水印)直接嵌入数字载体当中(包括多媒体、文档、软件等)或是间接表示(修改特定区域的结构),且不影响原载体的使用价值,也不容易被探知和再次修改。但可以被生产方识别和辨认。通过这些隐藏在载体中的信息,可以达到确认内容创建者、购买者、传送隐秘信息或者判断载体是否被篡改等目的。数字水印是保护信息安全、实现防伪溯源、版权保护的有效办法,是信息隐藏技术研究领域的重要分支和研究方向。

0 人点赞