用回归和主成分分析PCA 回归交叉验证分析预测城市犯罪率数据

2021-12-13 15:02:30 浏览数 (1)

原文链接:http://tecdat.cn/?p=24671

在本文中,我解释了基本回归,并介绍了主成分分析 (PCA) 使用回归来预测城市中观察到的犯罪率。我还应用 PCA 创建了一个回归模型,用于使用前几个主成分对相同的犯罪数据进行建模。最后,我对两种模型的结果进行了比较,看看哪个表现更好。

回归有助于显示因素和因变量之间的关系,它基本上回答了两种类型的问题;1. 吸烟对癌症的影响 2. 未来会发生什么?(例如)三年后的油价。

数据

犯罪学家对惩罚制度对犯罪率的影响感兴趣。已使用汇总数据对此进行了研究。数据集包含以下列:

变量描述 M: 14-24岁的男性在总人口中的百分比 So: 南方的指标变量 Ed: 25岁或以上人口的平均受教育年限 Po1:年警察保护的人均支出 Po2:去年警察保护的人均支出 LF:14-24岁年龄组的城市男性平民的劳动力参与率 M.F:每100名女性的男性人数 Pop:国家人口,以十万计 NW:非白人在人口中的百分比 U1:14-24岁城市男性的失业率 U2:城市男性35-39岁的失业率 财富财富:可转让资产或家庭收入的中值 收入不平等:收入低于中位数一半的家庭的百分比 入狱概率:入狱人数与犯罪人数的比率 时间:罪犯在首次获释前在国家监狱中服刑的平均时间(月)。 犯罪:每10万人口中的犯罪数量

导入R环境

代码语言:javascript复制
read("crim.txt")

检查变量是否正确

代码语言:javascript复制
head(crim) #所有的变量都是预测因素,只有犯罪是因变量。

创建简单的回归模型

代码语言:javascript复制
summary(model)

使用数据框架来手动创建我们的数据点测试,然后在测试数据上运行一些预测。

代码语言:javascript复制
primodl <- predict(mdl, test)

输出值不到下一个最低城市的犯罪率的一半,所以我将创建第二个模型,观察它的输出并画出比较。

创建第二个模型

代码语言:javascript复制
sumry(son_mel)

我们现在可以对第二个模型进行预测了

代码语言:javascript复制
pic_secn_mel<- prict(sed_odel, tst)

pic_secn_mel

与第一个模型相比,其结果明显更高。所以,它更合理。

交叉验证

我们可以做一个5折的交叉验证。

代码语言:javascript复制
cv(se,m=5)

我们可以得到数据和其平均值之间的平方差的总和

代码语言:javascript复制
 sum((Cm- mean(ui))^2)

我们可以得到模型1、模型2和交叉验证的平方残差之和

代码语言:javascript复制
SSrl <- sum(res^2)
代码语言:javascript复制
SSre <- sum(resi^2)
代码语言:javascript复制
res <- "ms")*nrow

我们也可以计算出3个模型的R平方值

代码语言:javascript复制
 1 -res/tot
代码语言:javascript复制
1-res/SS
代码语言:javascript复制
 1-res/SS

获得的R平方值表明我们的拟合质量很好。对于惩罚性回归,有必要对数据进行标准化,以确保所有的特征都受到同等的惩罚。但在线性回归的情况下,这其实并不重要。它将只是转移截距和系数,但相关关系保持不变。

PCA

PCA是一种用于描述变化的方法,显示数据集中的强相关性,从而使其易于探索和可视化数据。PCA通过以下方式对数据进行转换:(1)去除数据中的相关关系(2)按重要性对坐标进行排序。

我们可以检查crime数据的预测变量之间的相关性。

代码语言:javascript复制
pairs(srm,c("o",Ed"o"))

对数据集中的所有预测变量应用PCA。请注意,为了获得更准确的PCA结果,需要对这些变量进行标准化。

代码语言:javascript复制
sumr(pca)
rotan #PCA旋转是特征向量的矩阵
pca

然后,我们可以通过绘制每个主成分的方差来决定在 "前几个 "主成分中使用多少个主成分。

代码语言:javascript复制
plotpcaye ="ie")

要确定使用多少PC?我们可以尝试使用5个主成分作为开始。

代码语言:javascript复制
pcax[,1:5]

使用前五个PC,我们可以继续建立一个线性回归模型。

代码语言:javascript复制
 summary(mdPCA)

为了根据原始变量重建模型,首先我们从PCA线性回归模型中获得系数,之后通过使用主成分的特征向量将PCA成分系数转化为原始变量的系数。

PCA线性回归的系数

代码语言:javascript复制
coefficients[1]
coefficients[2:6]

 beta0 #截距

转换

代码语言:javascript复制
rot %*% beta

 t(alpha) # 标准化的数据系数

获得未标准化数据的系数。

代码语言:javascript复制
 ahusl <- ahs / sppy(u[,1:15],sd)

 ba0cl <- ea0 - sum/sapply(sd))

未标准化数据的系数

代码语言:javascript复制
 t(alas_sled)

 be0uced
代码语言:javascript复制
#我们可以得到我们的未标准化数据的估计值

as.marx %*% unscle   beta0aled

最后,为了比较使用PCA的模型和使用回归的模型的质量,我们必须计算R-squared和调整后的R-squared,并将这些数值与前一个模型的数值进行比较。调整后的R平方考虑了模型中预测因子的数量。

代码语言:javascript复制
 Rsquared <- 1 - SSE/SST # R-squared

使用所有变量的无PCA的先前线性回归模型

代码语言:javascript复制
 summary(dlLR)

R-squared 和调整后的 R-squared 值都较高,这表明至少对于使用前五个主成分的模型,具有 PCA 的线性回归模型优于没有 PCA 的线性回归模型。为了检查使用不同数量的前 n 个主成分的线性回归模型是否产生了更好的拟合模型,我们可以使用循环并进一步进行交叉验证。

本文摘选《R语言回归和主成分PCA 回归交叉验证分析预测城市犯罪率数据

0 人点赞